Bits, Bytes, and Precision

Bit: Smallest amount of information in a
computer.

— Binary: A bit holds either a O or 1.

— Series of bits make up a number.

Byte: 8 hits.

Single precision variable: 4 bytes (32 bits)
— Essentially 10 significant digits.

Double precision variable: 8 bytes (64 bits)
— Essentially19 significant digits

Example: Quality controlling hourly station reports
on a local mesonet (25 stations)

 Read in temperatures and dew points from a file.
* Find the average temperature and dew point

* Print stations that have temperature and/or dew points
greater than +5 °F from the mean, sorted so that stations
with the largest deviation are printed first

 How do | accomplish this task?

* You could try and read and re-read the file over and
over, but this is inefficient. What do you do?

FORTRAN 90: Arrays

Meteorology 2270

Data Structures

Data structure to store and organize the
collection of temperatures and dew points.

Structure should allow data storage and
retrieval.

Data should be stored in main memory.

1-D array: Stores a fixed number of data values,
all of the same type.

Variables vs. Arrays

exam_score 1

Array. Indexes 0 1 2z 3 4

exam_scores 1 3 8 23 99

1-D Arrays

* In FORTRAN 90, the type statement would look
like:
— REAL, DIMENSION(25) :: TEMP
— REAL, DIMENSION(25) :: DEW
— REAL, DIMENSION(25) :: TEMP, DEW

« Creates two arrays named TEMP and DEW
consisting of 25 memory locations for each In
which reals can be stored.

Accessing an Array

Two methods of accessing an array

Use array-variable (TEMP, DEW) to refer to the entire
array.

— TEMP =0

Use a subscripting variable and an index to refer to an
iIndividual element

— TEMP(5), DEW(6) is the 5" temperature and the 6" dew point.
— Each subscript variable refers to a memory location.

By default, FORTRAN indexing starts at 1 unless
otherwise stated.

— TEMP(1) is the first element, TEMP(2) is the second, etc.

Examples

TEMP(5) = 68

DEW(5) = 66

DEPRESSION(5) = TEMP(5) — DEW(5)

PRINT *, “Dew Point Depression = “, DEPRESSION(5)

READ(10,*) TEMP(N), DEW(N)
— How might this be used?

DO N=1, 25
READ(10,*) TEMP(N), DEW(N)
END DO

Mean-time to failure program in book.

Implied DO loops

« Can be used to simplify input and output
— Useful, but does sacrifice readabillity.

« (list-of-variables, control-var = init-value, limit, step)

« READ(10,*) (TEMP(N), DEW(N), N=1,25)
— This Is equivalent to the loop on the previous slide.

Compile time and Allocatable Arrays

What do we currently know?
Size of arrays are fixed at compile time.
Small dataset: wasted memory

Large dataset: Too large to store and process
correctly.

Compile time arrays

type, DIMENSION(l:u) :: list-of-array-names

type :: list-of-array specifiers
— array-name(l:u)

FORTRAN does allow a subscript to be any integer
value, positive, negative, or zero

— Must not fall outside of the range specified.

INTEGER, PARAMETER ::LowerLimit_1= -1, UpperLimit 1 =3, &
LowerLimit_2 = 0, UpperLimit 2 =5

INTEGER, DIMENSION(LowerLimit_1 : UpperLimit_1) :: Alpha
REAL, DIMENSION(LowerLimit_2 : UpperLimit_2) :: Beta

Run-time or Allocatable arrays

« ALLOCATE attribute

— REAL, DIMENSION(:), ALLOCATABLE :: list-of-array-names
— REAL, DIMENSION(:), ALLOCATABLE :: A, B

« Laterin program.....
— ALLOCATE(list, STAT = status-variable)
— Listis a list of array specifications of the form array-name(l:u)
— Status-variable is an integer variable that:
» 0 is allocation of array is successful.
* Non-zero if an error occurred.
« Even later in the program
— DEALLOCATE(list, STAT=status-variable)

— Status-variable is identical to ALLOCATE statement except for
deallocating the array.

Array Constants

Arrays may be filled by a list of values enclosed between (/ and /)
- A=(/2,4,6,8, 10, 12, 14, 16, 18, 20/)

This may be simplified with an implied do loop
— A=(/(2*N,N =1, 10) /)
— A=(/2,4,(N,N=86,18,2),20/)

How do we use this?

— INTEGER, DIMENSION(10) :: A
A=(2,4,6,8,10,12, 14, 16, 18, 20/)
A=((2*N,N=1, 10) /)
A=(2,4,(N,N=6,18,2),20)/)

Each of these are the same as:
— DON=1,10
A(N) = 2*N
END DO

Quick Digression: Modulus
MOD(A,P) = A—INT(A/P) * P
Returns the remainder when A is divided by P.

Examples

— Z =MOD(9,3)

— Z=MOD(10,3)

— Z = MOD(Hours_into_model run,24)

Arguments can be integer or real.

Array Expressions

Operators and functions normally applied to simple expressions may also be applied
to arrays having the same number of elements.

— Operations are carried out element by element.

INTEGER, DIMENSION(4) :: A, B
INTEGER, DIMENSION(0:3) :: C
INTEGER, DIMENSION(6:9) :: D
LOGICAL, DIMENSION(4) :: P
A=(1,2 3,4/

B=(/5,6,78/)

C=(-1,3,-5 7/

A= A+B

D=2*ABS(C) + 1

P = (C > 0) .AND. (MOD(B,3) == 0)

What are A, D, and P?

A=6,8, 10,12
D=3,7,11, 15
P = .false., .true., .false., .false.

Array Assignment

Array-variable = expression

The value of expression assigned to an array
variable must be either:

— An array of the same size as the array variable, or
— A simple value.

In the second case, the value Is broadcast to all
members of the array.

Array Sections and Subarrays

« Allows you to construct new arrays by selecting
elements from another array
— Array-name(subscript-triplet)
— Array-name(vector-subscript)

« Subscript triplet: lower : upper : stride
— If lower (upper) is omitted, the lower (upper) bound in the array
declaration is used.
INTEGER, DIMENSION(10) :: A
INTEGER, DIMENSION(5) :: B, |
A= (11, 22, 33, 44, 55, 66, 77, 88, 99, 110/)
B=A(2:10:2)

What is B?

Array sections cont.: Vector-subscripts

« A=(/11, 22, 33, 44, 55, 66, 77, 88, 99, 110/)

N=(/6,5,3,9 1/
B = A(N)

« Assigns to B the element locations from array A listed by N.

— Values in N become indices.
— B =66, 55, 33, 99, 11

B=A((/5 3,3,4,3/)?

e A(1:10:2)=(/N*2,N=1,5/)?

Subarrays cont.: Input/Output

« DO N =1, NumTemps

READ(10,*) Temp(N)
END DO

« READ(10,*) (Temp(N), N =1, NumTemps)
« READ(10, *) Temp(1:NumTemps)

 PRINT *, Temp(1:NumTemps)

WHERE construct

Used to assign values to arrays depending on the value of a logical array expression
WHERE (logical-array-expr)
array-var = array-expr

ELSEWHERE
array-var = array-expr
END WHERE

Logical expression is evaluated element by element.
INTEGER, DIMENSION(5) :: A=(/0, 2,5, 0, 10/)
REAL, DIMENSION(5) :: B

WHERE (A > 0)
B = 1.0/ REAL(A)
ELSEWHERE
B=-1.0
END WHERE

What is B?

B=-1.0,0.5,0.2,-1.0,0.1

Arrays as Arguments

Several intrinsic functions exist for arrays
ALLOCATED(A)
— Returns true if memory has been allocated to the allocatable array A and false otherwise
MAXVAL(A)
— Returns the maximum value of A
MINVAL(A)
— Returns the minimum value of A
MAXLOC(A)

— Returns a one-dimensional array containing on element whose value is the position of the
first occurrence of the maximum value in A.

— MINLOC(A)
DOT_PRODUCT(A,B)

— Returns the dot product of arrays A and B.
SUM(A)

— Returns the sum of the elements in A.
PRODUCT(A)

— Returns the product of the elements in A.
SIZE(A)

— Returns the number of elements in A.
Others can be found in appendix A.

Multi-Dimensional Arrays

Many applications

— Data naturally fits into a table.
« Times series of temperature measurements from multiple stations.

— Data is on a grid.

Example: Hourly data from Flory MicroNet.
— 50 stations reporting hourly output.
— Construct table/form array to hold data.

REAL, DIMENSION(24,50) :: Temperature

— Indices are arranged as (hour, station)

REAL, DIMENSION(1:24,1:50) :: Temperature
Question: What is Temperature(12,12)?

Multi-Dimensional Arrays cont.

This array only holds data for one day, what if |
want multiple days?

REAL, DIMENSION(365,24,50) :: Temperature
— Indices are arranged as (day, hour, station).

What is Temperature(180,12,20)?

Temperature from the 20" station on the 180"
day of year at the 12t hour.

Declarations — Complile time

type, DIMENSION(L,:U,,L,:U,,....,.L:U,) :: list
type, list-of-array-specifiers

— Number of dimensions, k, is called the “rank” of the
array.

REAL, DIMENSION(1:2,-1:3) :: Alpha
REAL, DIMENSION(0:2,0:3,1:2) :: Beta

List all of the valid references to each array?

Declarations - Allocatable

type, DIMENSIONC(, :, 1, ..., :), ALLOCATABLE :: list

REAL, DIMENSION (i, :, :), ALLOCATABLE :: Beta
REAL, DIMENSION (:, :), ALLOCATABLE :: Alpha

ALLOCATE(Beta(0:2,0:3,1:2), Alpha(1:2,-1:3), &
STAT = AllocateStatus)

Example: Table of temperatures.

Sorting and Searching

Section 8.4

Sorting: Arranging items in a list so that they are
In ascending or descending order.

— Selection sort, quick sort, bubble sort

Searching: Finding a specified item and
retrieving information associated with that item.
— Linear search, binary search

Selection Sort

Traverse the list, or part of the list, several times, each
time selecting one item to be correctly positioned.

Method (ascending order):

1. Find smallest item and move it to the first position by
exchanging it with that number.

2. Scan the rest of the list starting from position #2 and repeat.

3. Continue in this manner until the list is sorted.
1. 3 element in the list to the end of the list, etc.

Let’'s practice.

Quick Sort (Recursive sorting)

* More efficient than a selection sort.
« One of the fastest sorting methods.

« Method:

— Select pivot element (typically first element).

— Perform exchanges so that all elements on left of pivot are less
than the pivot and all elements on the right are greater than the
pivot.

« Correctly positions the pivot element.
» Divides the list into two sub-lists.

— Sort sub-lists independently in the same way.
» Divide and conquer approach.

* 50, 30, 20, 80, 90, 70, 95, 85, 10, 15, 75, 25

Searching

 Linear Search

— Begin with first item in list and search sequentially
until desired item iIs found or end of list is reached.

« Binary Search

— If a list has been sorted, a binary search can be used
more efficiently.

— Method

« Examine middle element in the list. Is it the desired element?

* |f not, determine if desired item in the first or second half of
list.

« Search that half of the list using the same approach.

