
Bits, Bytes, and Precision

• Bit: Smallest amount of information in a

computer.

– Binary: A bit holds either a 0 or 1.

– Series of bits make up a number.

• Byte: 8 bits.

• Single precision variable: 4 bytes (32 bits)

– Essentially 10 significant digits.

• Double precision variable: 8 bytes (64 bits)

– Essentially19 significant digits

Example: Quality controlling hourly station reports

on a local mesonet (25 stations)

• Read in temperatures and dew points from a file.

• Find the average temperature and dew point

• Print stations that have temperature and/or dew points
greater than ±5 ºF from the mean, sorted so that stations
with the largest deviation are printed first

• How do I accomplish this task?

• You could try and read and re-read the file over and
over, but this is inefficient. What do you do?

FORTRAN 90: Arrays

Meteorology 2270

Data Structures

• Data structure to store and organize the
collection of temperatures and dew points.

• Structure should allow data storage and
retrieval.

• Data should be stored in main memory.

• 1-D array: Stores a fixed number of data values,
all of the same type.

Variables vs. Arrays

exam_score

exam_scores

1-D Arrays

• In FORTRAN 90, the type statement would look

like:

– REAL, DIMENSION(25) :: TEMP

– REAL, DIMENSION(25) :: DEW

– REAL, DIMENSION(25) :: TEMP, DEW

• Creates two arrays named TEMP and DEW

consisting of 25 memory locations for each in

which reals can be stored.

Accessing an Array

• Two methods of accessing an array

• Use array-variable (TEMP, DEW) to refer to the entire
array.
– TEMP = 0

• Use a subscripting variable and an index to refer to an
individual element
– TEMP(5), DEW(6) is the 5th temperature and the 6th dew point.

– Each subscript variable refers to a memory location.

• By default, FORTRAN indexing starts at 1 unless
otherwise stated.
– TEMP(1) is the first element, TEMP(2) is the second, etc.

Examples

• TEMP(5) = 68

DEW(5) = 66

DEPRESSION(5) = TEMP(5) – DEW(5)

PRINT *, “Dew Point Depression = “, DEPRESSION(5)

• READ(10,*) TEMP(N), DEW(N)

– How might this be used?

• DO N=1, 25

READ(10,*) TEMP(N), DEW(N)

END DO

• Mean-time to failure program in book.

Implied DO loops

• Can be used to simplify input and output

– Useful, but does sacrifice readability.

• (list-of-variables, control-var = init-value, limit, step)

• READ(10,*) (TEMP(N), DEW(N), N=1,25)

– This is equivalent to the loop on the previous slide.

Compile time and Allocatable Arrays

• What do we currently know?

• Size of arrays are fixed at compile time.

• Small dataset: wasted memory

• Large dataset: Too large to store and process

correctly.

Compile time arrays

• type, DIMENSION(l:u) :: list-of-array-names

• type :: list-of-array specifiers
– array-name(l:u)

• FORTRAN does allow a subscript to be any integer
value, positive, negative, or zero
– Must not fall outside of the range specified.

• INTEGER, PARAMETER ::LowerLimit_1= -1, UpperLimit_1 = 3, &
LowerLimit_2 = 0, UpperLimit_2 = 5

INTEGER, DIMENSION(LowerLimit_1 : UpperLimit_1) :: Alpha

REAL, DIMENSION(LowerLimit_2 : UpperLimit_2) :: Beta

Run-time or Allocatable arrays

• ALLOCATE attribute
– REAL, DIMENSION(:), ALLOCATABLE :: list-of-array-names

– REAL, DIMENSION(:), ALLOCATABLE :: A, B

• Later in program…..

– ALLOCATE(list, STAT = status-variable)

– List is a list of array specifications of the form array-name(l:u)

– Status-variable is an integer variable that:

• 0 is allocation of array is successful.

• Non-zero if an error occurred.

• Even later in the program

– DEALLOCATE(list, STAT=status-variable)

– Status-variable is identical to ALLOCATE statement except for
deallocating the array.

Array Constants

• Arrays may be filled by a list of values enclosed between (/ and /)
– A = (/ 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 /)

• This may be simplified with an implied do loop
– A = (/ (2*N, N = 1, 10) /)

– A = (/ 2, 4, (N, N = 6, 18, 2), 20 /)

• How do we use this?
– INTEGER, DIMENSION(10) :: A

A = (/ 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 /)

A = (/ (2*N, N = 1, 10) /)

A = (/ 2, 4, (N, N = 6, 18, 2), 20 /)

• Each of these are the same as:
– DO N = 1, 10

A(N) = 2*N

END DO

Quick Digression: Modulus

• MOD(A,P) = A – INT(A/P) * P

• Returns the remainder when A is divided by P.

• Examples
– Z = MOD(9,3)

– Z = MOD(10,3)

– Z = MOD(Hours_into_model_run,24)

• Arguments can be integer or real.

Array Expressions

• Operators and functions normally applied to simple expressions may also be applied
to arrays having the same number of elements.

– Operations are carried out element by element.

• INTEGER, DIMENSION(4) :: A, B

INTEGER, DIMENSION(0:3) :: C

INTEGER, DIMENSION(6:9) :: D

LOGICAL, DIMENSION(4) :: P

A = (/ 1, 2, 3, 4 /)

B = (/ 5, 6, 7, 8 /)

C = (/ -1, 3, -5, 7 /)

A = A+B

D = 2 * ABS(C) + 1

P = (C > 0) .AND. (MOD(B,3) == 0)

• What are A, D, and P?

• A = 6, 8, 10, 12

D = 3, 7, 11, 15

P = .false., .true., .false., .false.

Array Assignment

• Array-variable = expression

• The value of expression assigned to an array

variable must be either:

– An array of the same size as the array variable, or

– A simple value.

• In the second case, the value is broadcast to all

members of the array.

Array Sections and Subarrays

• Allows you to construct new arrays by selecting
elements from another array
– Array-name(subscript-triplet)

– Array-name(vector-subscript)

• Subscript triplet: lower : upper : stride
– If lower (upper) is omitted, the lower (upper) bound in the array

declaration is used.
• INTEGER, DIMENSION(10) :: A

INTEGER, DIMENSION(5) :: B, I

A = (/ 11, 22, 33, 44, 55, 66, 77, 88, 99, 110 /)

B = A(2 : 10 : 2)

• What is B?

Array sections cont.: Vector-subscripts

• A = (/ 11, 22, 33, 44, 55, 66, 77, 88, 99, 110 /)

N = (/ 6, 5, 3, 9, 1 /)

B = A(N)

• Assigns to B the element locations from array A listed by N.

– Values in N become indices.

– B = 66, 55, 33, 99, 11

• B = A((/5, 3 ,3 ,4 , 3 /))?

• A(1 : 10 : 2) = (/ N**2, N = 1, 5 /)?

Subarrays cont.: Input/Output

• DO N = 1, NumTemps

READ(10,*) Temp(N)

END DO

• READ(10,*) (Temp(N), N = 1, NumTemps)

• READ(10, *) Temp(1:NumTemps)

• PRINT *, Temp(1:NumTemps)

WHERE construct
• Used to assign values to arrays depending on the value of a logical array expression

• WHERE (logical-array-expr)

array-var = array-expr

….

ELSEWHERE

array-var = array-expr

END WHERE

• Logical expression is evaluated element by element.

• INTEGER, DIMENSION(5) :: A = (/ 0, 2, 5, 0, 10 /)

REAL, DIMENSION(5) :: B

WHERE (A > 0)

B = 1.0/ REAL(A)

ELSEWHERE

B = -1.0

END WHERE

• What is B?

• B = -1.0, 0.5, 0.2, -1.0, 0.1

Arrays as Arguments

• Several intrinsic functions exist for arrays

• ALLOCATED(A)

– Returns true if memory has been allocated to the allocatable array A and false otherwise

• MAXVAL(A)

– Returns the maximum value of A

• MINVAL(A)

– Returns the minimum value of A

• MAXLOC(A)

– Returns a one-dimensional array containing on element whose value is the position of the
first occurrence of the maximum value in A.

– MINLOC(A)

• DOT_PRODUCT(A,B)

– Returns the dot product of arrays A and B.

• SUM(A)

– Returns the sum of the elements in A.

• PRODUCT(A)

– Returns the product of the elements in A.

• SIZE(A)

– Returns the number of elements in A.

• Others can be found in appendix A.

Multi-Dimensional Arrays

• Many applications

– Data naturally fits into a table.

• Times series of temperature measurements from multiple stations.

– Data is on a grid.

• Example: Hourly data from Flory MicroNet.

– 50 stations reporting hourly output.

– Construct table/form array to hold data.

• REAL, DIMENSION(24,50) :: Temperature

– Indices are arranged as (hour, station)

REAL, DIMENSION(1:24,1:50) :: Temperature

• Question: What is Temperature(12,12)?

Multi-Dimensional Arrays cont.

• This array only holds data for one day, what if I
want multiple days?

• REAL, DIMENSION(365,24,50) :: Temperature
– Indices are arranged as (day, hour, station).

• What is Temperature(180,12,20)?

• Temperature from the 20th station on the 180th

day of year at the 12th hour.

Declarations – Compile time

• type, DIMENSION(L1:U1,L2:U2,….,Lk:Uk) :: list

• type, list-of-array-specifiers

– Number of dimensions, k, is called the “rank” of the

array.

• REAL, DIMENSION(1:2,-1:3) :: Alpha

REAL, DIMENSION(0:2,0:3,1:2) :: Beta

• List all of the valid references to each array?

Declarations - Allocatable

• type, DIMENSION(:, :, :, ..., :), ALLOCATABLE :: list

• REAL, DIMENSION (:, :, :), ALLOCATABLE :: Beta

REAL, DIMENSION (:, :), ALLOCATABLE :: Alpha

• ALLOCATE(Beta(0:2,0:3,1:2), Alpha(1:2,-1:3), &

STAT = AllocateStatus)

• Example: Table of temperatures.

Sorting and Searching

• Section 8.4

• Sorting: Arranging items in a list so that they are

in ascending or descending order.

– Selection sort, quick sort, bubble sort

• Searching: Finding a specified item and

retrieving information associated with that item.

– Linear search, binary search

Selection Sort

• Traverse the list, or part of the list, several times, each

time selecting one item to be correctly positioned.

• Method (ascending order):

1. Find smallest item and move it to the first position by

exchanging it with that number.

2. Scan the rest of the list starting from position #2 and repeat.

3. Continue in this manner until the list is sorted.

1. 3rd element in the list to the end of the list, etc.

• Let’s practice.

Quick Sort (Recursive sorting)

• More efficient than a selection sort.

• One of the fastest sorting methods.

• Method:

– Select pivot element (typically first element).

– Perform exchanges so that all elements on left of pivot are less

than the pivot and all elements on the right are greater than the

pivot.

• Correctly positions the pivot element.

• Divides the list into two sub-lists.

– Sort sub-lists independently in the same way.

• Divide and conquer approach.

• 50, 30, 20, 80, 90, 70, 95, 85, 10, 15, 75, 25

Searching

• Linear Search
– Begin with first item in list and search sequentially

until desired item is found or end of list is reached.

• Binary Search
– If a list has been sorted, a binary search can be used

more efficiently.

– Method
• Examine middle element in the list. Is it the desired element?

• If not, determine if desired item in the first or second half of
list.

• Search that half of the list using the same approach.

