Introduction, Computer Operations, Data, and Program Development

Meteorology 2270 Fall 2024

Programming?

- Programming Language: An artificial language that can be used to control the behavior of a machine (often a computer). (Wikipedia)
 - A standard communication technique for expressing instructions to a computer (Wikipedia).
- What languages have you heard of?
- Common (and not so common) languages: Fortran, C, C++, C#, Python, Perl, COBOL, BASIC, R, Pascal, Java, PHP, Lisp, Ruby, Ruby on Rails, AJAX, and so on, and so on.

Let's take a moment to examine the current programming trends.....

Why Fortran?

- Fortran = FORmula TRANslation
- Built for scientific programming.
- First "High-Level" programming language.
 - Platform independent
 - Statements don't look like machine language.
 - Portability, ease of use.
- Legacy codes

Programming for Meteorology and ISU

- NWS/Broadcast
 - Java, C++, Python. Object oriented programming.
 - AWIPS2 is primarily written in Java and plugins to AWIPS2 in Python.
- Research/Graduate School
 - Fortran, Python
 - Legacy codes, rapid processing of data.
- How does this impact ISU meteorology?
 - Programming requirement will accept either Mteor 227 or Comp Sci 207 (Java)
 - Mteor 227 will be offered every year during the fall semester.
 - Fortran and Python

History

- 1954-57
 - John Backus (IBM)
 - IBM Mathematical FORmula TRANslation system
 - Fortran 0 and Fortran I
- 1958
 - Fortran II
 - Separate compilation of modules.
 - Fortran III
 - Inlined assembly code.
- 1961
 - Fortran IV
 - Improved portability.
 - Implementation of new statements (common and equivalence).

History cont.

- 1963
 - ~40 different compilers.
 - Compiler: translates the Fortran code to something that the machine will understand.
 - Standardization needed.
- 1966
 - Fortran 66
 - First ANSI version.
 - ANSI American National Standard Institute
- 1978
 - Fortran 77
 - Second standard
 - Structured programming and other new features.
- 1991
 - Fortran 90
 - Third standard
 - New version promised in 10 years.

History cont.

- 1997
 - Fortran 95
 - Largely a 'Bug-Fix' release of Fortran 90.
 - Some extensions, mainly HPF extensions (see below)
 - Fourth standard
- Late 2004
 - Fortran 2003
 - Object Oriented programming support.
 - Improved operability with C.
- Late 2010
 - Fortran 2008 (Find out more at http://j3-Fortran.org/)
 - Co-Array Fortran (see below) extensions.

History cont.

• 2018

- Fortran 2018 (previously known as Fortran 2015)
- Planned minor revision
- Further interoperability between Fortran and C.
- More Parallel features
- Corrections of inconsistencies in Fortran 2008 ("Wart removal")
- Released November 2018.
- Current standard
- 2023
 - Released November 2023.
- Fortran 202y is the informal title of the next Fortran standard.
- Other types of Fortran
 - HPF: High performance Fortran (1993)
 - Co-Array Fortran (F--): Extension of 95/2003 for parallel processing.

Six Basic Computer Operations

- 1. Receive Information
 - Read TEMP
 - Get MAX_TEMP
 - Read TEMP, DEW_POINT
- 2. Provide Information
 - Print 'Tornado Warning'
 - Write METAR to file
 - Print TEMP, DEW_POINT
- 3. Perform Arithmetic
 - Add DAILY_RAIN to MONTHLY_RAIN
 - COUNT=COUNT+1

Six Basic Computer Operations

- 4. Assign a value to a variable or memory location.
 - Initialize MAX_TEMP, MIN_TEMP to zero.
 - Set counter to zero.
 - RAIN = RAIN + INCREMENT
- 5. Compare two variables and select one of two options
 - Selective execution
- 6. Repeat a group of actions
 - Repetitive execution (loops)

Data Types

- Integer
 - 32, -40, 212
- Real
 - 3.14, 2.5E6, 9.81
- Character
 - 'F', 'C', '%'
- Boolean
 - Two possible values: true or false

Stages in Program Development

- Programming: Development of a solution to an identified problem, and the setting up of a related series of instructions which, when directed through computer hardware, will produce the desired result.
- How do you do this?
 - Jumping straight to the code can be time consuming (error checking) and inefficient.
 - Seven Steps

Program Development

- 1. Define the problem
- 2. Outline the solution
 - Break into smaller tasks or steps
 - Establish an outline solution
 - Inputs
 - Outputs
 - Processing steps to produce the required output
 - Defining diagram (later)

Program Development cont.

- 3. Develop the outline into an algorithm
 - A set of precise steps that describe exactly the tasks to be performed and the order in which they are to be carried out.
 - Pseudocode, flow-charts, Nassi-Schneidermann diagrams.
- 4. Test the algorithm for correctness.
 - Use test data to check instructions
 - Keep track of all major variables
 - Desk check

Program Development cont.

- 5. Code the algorithm into a specific programming language.
 - Finally, you get to write code!
- 6. Run the program on the computer.
- 7. Document and maintain the program.
 - Document, document, document!
 - Comments, comments, comments!

Algorithm

- A set of detailed, unambiguous, and ordered instructions developed to describe the processes necessary to produce the desired output from a given input.
 - Lists the steps involved in accomplishing a task.
- Written in English and not a formal document.
- Pseudocode, flowcharts, Nassi-Schneiderman diagrams.

Pseudocode

- Essentially structured English
- Statements written in simple English
- Each instruction is written on a separate line.
- Keywords and indentation are used to signify particular control structures.
- Each set of instructions is written from top to bottom, with only one entry and one exit.
- Groups of statements may be formed into modules, and that group given a name.

Flowcharts

- Terminal symbol (starting and stopping points)
- Input/Output symbols
- Process symbols
- Predefined process symbol
- Decision symbol
- flow lines

Example Problem

- Take a temperature input from the user in either degrees F or C and output the same temperature converted to the other unit.
 - Follow 7 steps of program design.
 - Defining diagram.
 - Solution algorithm (flowchart)
 - Desk Check.