
Scientific Programming,

Analysis, and Visualization

with Python

Mteor 2270 – Fall 2024

Python – The Big Picture
• Interpreted

• General purpose, high-level

• Dynamically type

• Multi-paradigm

– Object-oriented

– Functional programming features

Python is Interpreted, not Compiled

• Python is an interpreted programming language.

• The difference between an interpreted language and a compiled

language (such as Fortran or C++) is:

– Compiled language: the entire source code text file is read and then and

then converted into an executable code (in machine language) that can

be directly executed by the operating system. This executable code is

often optimized for the operating system.

– Interpreted language the source code text file is read line-by-line and

each statement converted into machine language and executed before

the next line is read, or the text-file is read completely and converted

into an intermediate code that is then further converted into machine

language for execution by the operating system.

About Python

• Compiled languages are generally more efficient and faster

– Conversion to machine language only occurs once and the executable can be

run whenever needed.

• In an interpreted language, the interpretation process occurs every

time the program is run.

• Interpreted languages are often more flexible and changes can be

easily made to the program at runtime.

Python is Dynamically Typed

• Most variables do not need to be declared as real,

integer, string, etc.

• The type of a variable is defined by the value assigned to

it.

• The type of a variable can change throughout the

program execution.

• The opposite of dynamically-typed is statically-typed.

FORTRAN and C are examples of statically-typed

languages.

Python is Object-oriented

• Although Python is an object-oriented language,

we will often use it in a more traditional

procedural or functional programming paradigm.

• For those who want to truly learn about what

object-oriented means, and how to use it to its

fullest, I recommend a book titled The Object-

oriented Thought Process by Matt Weisfeld.

Python is Open-source and Free

• Unlike with MATLAB or IDL there are no licenses

required.

• There are companies that put together high quality

Python bundles and support them for a fee. The

advantage is that the libraries supported by these

bundles work together with few bugs.

• However, the same libraries can be assembled and

installed freely from other sources, though there may be

some additional headaches sorting out dependencies,

etc.

Versions of Python
• Python is a relatively young and fast moving language

– Python 1.0: 1994

– Python 2.0: 2000

– Python 2.7: 2010

– Python 3.0: 2008

– Python 3.4: 2014

– Python 3.5: 2015

– Python 3.6: 2016

– Python 3.7: 2018

– Python 3.8: 2019

– Python 3.9: 2020

– Python 3.10: 2021

– Python 3.11: 2022

– Python 3.12: 2023

– Python 3.13: 2024

• Python 3.X does not maintain backward compatibility with the older versions of

Python

– Thus, code developed for Python 2.X may not work with Python 3.X, and vice-versa.

– New, large projects should be written in 3.X

– For research code, often depending on exotic modules, use 2.7.

• We will use Python 3.x in this course.

Basic Shell Scripting/Programming with

Python

• Shell: a user interface for access to an operating

system’s services.

– The outer layer between the user and the operating system.

• The first line in your program needs to be:

#!/usr/bin/python

• This line tells the computer what python interpreter to

use.

Pycharm/IDLE/Eclipse/Ipython or Jupyter

• Pycharm and IDLE: Interactive development

environments.

• Eclipse: a multi-language integrated development

environment that is popular on campus.

• For now, we will focus on JupyterHub or JupyterLab for

development (Ipython).

Advantages for Scientific Computing

• Large and fast growing user community.

• Large and fast growing number of libraries

for scientific computing.

• Well integrated with popular existing

codes.

• Highly extensible, large collection of add-

on packages.

• Easy communication with R, C, Fortran

When to use Python

• Always!

• Except…..

– You need the speed of C or Fortran

– You can re-use significant code written in other

languages.

– You do HPC (using MPI, OpenMP)

– You can profit from a non-Python tradition in your field

or workgroup.

– Something else is better for the task

• R, Matlab at times, for example

Documentation and Books

• One book that I use more than any other for

reference is:

– Python: Essential Reference (4th ed.) by

David M. Beazley.

• Another book that may be helpful is: Python

Pocket Reference by Mark Lutz.

Online Documentation

• See course web page.

