FORTRAN 90: Functions, Modules,
and Subroutines

Meteorology 2270

Purpose

First step in modular program design

Cannot always anticipate all of the steps that will be
needed to solve a problem
— Easier to break problem up into a series of smaller steps

— Subprograms can be written to implement each of these small
steps.

In the completely modular world, each subprogram has
one and only one purpose.

FORTRAN 90: Functions, modules, and subroutines

Differences between a function
and a subroutine

* Functions are designed to return a single value.
— Subroutines: several values or no value at all.

 Functions return values as function names.
— Subroutines: return values via arguments.

* Functions are referenced through the function
name.

— Subroutines are referenced by a call statement.

Functions

 Intrinsic, or library, functions and programmer-defined
functions

* Programmer-defined function: Behave just like library
functions when written.

* Function sub-programs
function heading
specification part
execution part
END FUNCTION statement

FUNCTION statement

FUNCTION function-name (formal-argument list)
OR
type-identifier FUNCTION function-name (formal-argument list)

Function-name: any legal Fortran identifier.

Formal-argument list: identifier or a list of identifiers
separated by commas

— Formal or dummy arguments

— Receive information from the main program.

type-identifier: name of a type (REAL, INTEGER, etc.)

Specification/Execution Sections

Same form as the specification part of a Fortran program plus:

— The type of the function if this has not been included in the function
heading.
— The type of each formal argument.
« INTENT specifier: tells how the arguments are to transfer information.

Execution section has same form as Fortran program plus:

— Include at least one statement that assigns a value to the identifier that
names the function

« Function-name = expression

END FUNCTION function-name

Aside: RETURN statement
— RETURNS values of the function when executed.
— Not necessary in Fortran 90, but is probably something you will run into.

Example: Temperature conversion

* Write a function to convert a temperature
measured in degrees Fahrenheit into degrees
Celsius.

~C=(F-32)/18

 REAL, INTENT(IN) :: Temperature

— Temperature will only be used to transfer information
Into the function

« OK! Now we have this cool function, how do we
use Iit?

Main program syntax

This subprogram can be made accessible to the main
program in three ways:

Placed in a subprogram section in the main program
just before the END PROGRAM section (internal
subprogram).

Placed in a module from which it can be imported into
the program (module subprogram).

Placed after the END PROGRAM statement of the
main program (external subprogram).

Internal subprogram

« Main program includes, just before END
PROGRAM statement:

CONTAINS
subprogram_1
subprogram_2
subprogram_3

* Ok, let’s see the main program for our
temperatures conversion program.

Method of Execution

Main program as usual until the assignment statement
containing the reference to the function.

Actual argument ‘FahrenheitTemp’ is copied to ‘Temp’
argument in function.

Control is transferred from the main program to the
function subprogram, which begins execution.

Assignment statement is evaluated using ‘Temp’
Value computed is returned as the value of the function.

Control is transferred back to the main program and the
value of the function is assigned to ‘CelsiusTemp’.

Execution continues on through the remainder of the
main program.

INTENT(IN)

When a function is referenced, the values of the actual arguments are
passed to the function

— Values are used in the calculation, but should not change during execution of the
function.

INTENT(IN) protects the corresponding actual argument by ensuring that
the value of the formal argument cannot be changed during function
execution.

If not used, the value of the formal argument may be changed in the
function and the value of the corresponding actual argument will also
change.

Number and type of actual arguments must agree with the number and type
of formal arguments.

NOTE: Local identifiers can be defined within the function, just as in the
main program.

Scope

« May be several points where variables, constants,
subprograms, types are declared
— Main program, subprograms, modules.

e Scope: portion of program where these are visible, or
where they are accessible and can be used.

« Fundamental Principle: The scope of an entity is the
program or subprogram in which it is declared.

Rule #1

* An item declared within a subprogram is not
accessible outside that subprogram.

* |Item is ‘local’ to that subprogram.

* ltem is ‘global’ if declared in the main program.

Rule #2

A global entity is accessible throughout the main program and in any
internal subprograms in which no local entity has the same name as the
global item.

Factorial example

Warning: Although global variables can be used to share data between the
main program and internal subprograms, it is usually unwise to do so.

— Reduces the independence of the various subprograms making modular
programming more difficult.

— Changing a global variable in one part of a program changes it throughout the
program, including all internal subprograms.

Statement labels are not governed by scope rule #2.
— FORMAT statements in the main program cannot be used within subprograms.

IMPLICIT is global.
— Not necessary to include it in these subprograms.

Saving values of local variables

« Values of local variables in sub-programs are
not retained from one execution to the next,
unless:

— They are initialized in their declarations, or
— They are declared to have the SAVE attribute.

» type, SAVE :: list-of-local variables

« SAVE list-of-local variables
— If list is omitted, values of all variables will be saved.

External Subprograms

o Attached after the END PROGRAM statement of
program unit.

— Example: Temperature conversion revisited.

 Note #1: Function name iIs declared in the main
program and subprogram.

* Note #2: Compiler may not be able to check
references to subprogram.

— Argument type, number of arguments, type of return
value, etc.

Interface blocks

Internal functions and modules have an ‘explicit
interface’

— Allows compiler to check arguments and results are returned
correctly.

For external subprograms, an ‘implicit interface’ must be

provided for this functionality

— Page 140 in text for syntax of interface block.

— Looks like a function header in C or C++.

— ‘interface block’ is same as function declarations within the
actual function.

Example: Temperature-conversion revisited, again.

Subroutines

« subroutine heading
specification part
execution part

END subroutine statement

« Specification and execution sections are the
same as before.

Similar to Functions......

Designed to perform particular tasks under
control of some other program.

Same basic form (heading, specification,
execution, END).

May be internal, module, or external.

Scope rules apply.

...... yet different

* Functions are designed to return a single value.
— Subroutines: several values or no value at all.

 Functions return values as function names.
— Subroutines: return values via arguments.

* Functions are referenced through the function
name.

— Subroutines are referenced by a call statement.

Subroutines

« subroutine heading
specification part
execution part
END subroutine statement

« Specification and execution sections are the
same as before.

Subroutine syntax

Subroutine heading

SUBROUTINE subroutine-name(formal-argument-list)
End statement
END SUBROUTINE subroutine-name

That's it. Now all you need to know is how to
Incorporate them into a program.

Using a subroutine

« CALL subroutine-name(actual-argument-list)

— Arguments must match SUBROUTINE statement in
number and type.

— subroutine-name is not given a type like in functions.

« Examples
— Displaying an angle in degrees.
— Converting coordinates.

Argument association

Coordinate conversion example.

— R, Theta: Variables are only to be passed to them.
* Not intended to return values.

— INTENT(IN)

— X, Y: Intended only to pass values back to the calling program unit
— INTENT(OUT)

INTENT(INOUT)

— Used to pass information both to and from the subroutine.

Note: Because both OUT and INOUT are intended to pass values
back to calling program, the corresponding actual arguments must
be variables!

Read section 7.2 (subroutines and functions as arguments).

Modules

Often similar calculations occur in a variety of applications.
— Convenient to use the same sub-program in each of these applications.

Module: a program unit used to package together type declarations
and subprograms

MODULE Name

CONTAINS
subprogram #1
subprogram #2
etc.

END MODULE name

Packages the subprograms, called module subprograms, together in
a library that can be used in any other program unit.

Using a module

Temperature-conversion library

USE module-name

— Placed at the beginning of the specification section of your main
program.

— All identifiers used in the specified module are imported into the
program unit.

USE module-name, ONLY: list
— Only identifiers listed are imported.

USE Temperature, ONLY: Fahr_to Celsius

Translation to source program

Two steps

Compilation

« Source program is translated into an object file (.0 extension)

Linking

« References to functions contained in a module are linked to their
definitions in that module

« Creates the executable program

Could take up to three steps

1.

2.
3.

Separate compilation of the program’s source file, creating an object
file.

Separate compilation of the module, creating a different object file.

Linking the function calls in the program’s object file to the function
definitions in the module’s object file.

« Creates the executable program.

Examples

Assume you have a module called
temperature_library.f90 and a main program
temperature_conversion.f90

gfortran temperature_library.f90 temperature conversion.fo0

gfortran temperaure_conversion.f90 temperature_library.f90? Still works.....
gfortran —c temperature_library.f90

gfortran temperature_library.o temperature_conversion.fo0

gfortran —c temperature_library.f90

gfortran —c temperature_conversion.f90

gfortran temperature_library.o temperature_conversion.o

Last examples used in ‘make’ files.

What are all these file types?

Program file: contains your main program

Module subprogram file: contains your function
subprograms.

Object file (.0): Machine language program.

Executable: Finished (contains all links), executable
program.

Module (.mod): Meant to be a portable object, that
doesn’t need to be recompiled.

— Not always the case (more later)

Practice

« Take a *working* version of your CAPE/CIN
program and put your function into a module.

« Compile and run your program to see that it
works as advertised.

