
FORTRAN 90: Functions, Modules,

and Subroutines

Meteorology 2270

Purpose

• First step in modular program design

• Cannot always anticipate all of the steps that will be
needed to solve a problem
– Easier to break problem up into a series of smaller steps

– Subprograms can be written to implement each of these small
steps.

• In the completely modular world, each subprogram has
one and only one purpose.

• FORTRAN 90: Functions, modules, and subroutines

Differences between a function

and a subroutine
• Functions are designed to return a single value.

– Subroutines: several values or no value at all.

• Functions return values as function names.

– Subroutines: return values via arguments.

• Functions are referenced through the function

name.

– Subroutines are referenced by a call statement.

Functions

• Intrinsic, or library, functions and programmer-defined

functions

• Programmer-defined function: Behave just like library

functions when written.

• Function sub-programs

function heading

specification part

execution part

END FUNCTION statement

FUNCTION statement

• FUNCTION function-name (formal-argument list)
OR

• type-identifier FUNCTION function-name (formal-argument list)

• Function-name: any legal Fortran identifier.

• Formal-argument list: identifier or a list of identifiers

separated by commas

– Formal or dummy arguments

– Receive information from the main program.

• type-identifier: name of a type (REAL, INTEGER, etc.)

Specification/Execution Sections

• Same form as the specification part of a Fortran program plus:
– The type of the function if this has not been included in the function

heading.

– The type of each formal argument.
• INTENT specifier: tells how the arguments are to transfer information.

• Execution section has same form as Fortran program plus:
– Include at least one statement that assigns a value to the identifier that

names the function
• Function-name = expression

• END FUNCTION function-name

• Aside: RETURN statement
– RETURNS values of the function when executed.

– Not necessary in Fortran 90, but is probably something you will run into.

Example: Temperature conversion

• Write a function to convert a temperature
measured in degrees Fahrenheit into degrees
Celsius.
– C = (F – 32) / 1.8

• REAL, INTENT(IN) :: Temperature
– Temperature will only be used to transfer information

into the function

• OK! Now we have this cool function, how do we
use it?

Main program syntax

• This subprogram can be made accessible to the main
program in three ways:

1. Placed in a subprogram section in the main program
just before the END PROGRAM section (internal
subprogram).

2. Placed in a module from which it can be imported into
the program (module subprogram).

3. Placed after the END PROGRAM statement of the
main program (external subprogram).

Internal subprogram

• Main program includes, just before END

PROGRAM statement:

CONTAINS

subprogram_1

subprogram_2

subprogram_3

• Ok, let’s see the main program for our

temperatures conversion program.

Method of Execution

• Main program as usual until the assignment statement
containing the reference to the function.

• Actual argument ‘FahrenheitTemp’ is copied to ‘Temp’
argument in function.

• Control is transferred from the main program to the
function subprogram, which begins execution.

• Assignment statement is evaluated using ‘Temp’

• Value computed is returned as the value of the function.

• Control is transferred back to the main program and the
value of the function is assigned to ‘CelsiusTemp’.

• Execution continues on through the remainder of the
main program.

INTENT(IN)

• When a function is referenced, the values of the actual arguments are
passed to the function

– Values are used in the calculation, but should not change during execution of the
function.

• INTENT(IN) protects the corresponding actual argument by ensuring that
the value of the formal argument cannot be changed during function
execution.

• If not used, the value of the formal argument may be changed in the
function and the value of the corresponding actual argument will also
change.

• Number and type of actual arguments must agree with the number and type
of formal arguments.

• NOTE: Local identifiers can be defined within the function, just as in the
main program.

Scope

• May be several points where variables, constants,

subprograms, types are declared

– Main program, subprograms, modules.

• Scope: portion of program where these are visible, or

where they are accessible and can be used.

• Fundamental Principle: The scope of an entity is the

program or subprogram in which it is declared.

Rule #1

• An item declared within a subprogram is not

accessible outside that subprogram.

• Item is ‘local’ to that subprogram.

• Item is ‘global’ if declared in the main program.

Rule #2

• A global entity is accessible throughout the main program and in any
internal subprograms in which no local entity has the same name as the
global item.

• Factorial example

• Warning: Although global variables can be used to share data between the
main program and internal subprograms, it is usually unwise to do so.

– Reduces the independence of the various subprograms making modular
programming more difficult.

– Changing a global variable in one part of a program changes it throughout the
program, including all internal subprograms.

• Statement labels are not governed by scope rule #2.
– FORMAT statements in the main program cannot be used within subprograms.

• IMPLICIT is global.
– Not necessary to include it in these subprograms.

Saving values of local variables

• Values of local variables in sub-programs are
not retained from one execution to the next,
unless:
– They are initialized in their declarations, or

– They are declared to have the SAVE attribute.

• type, SAVE :: list-of-local variables

• SAVE list-of-local variables
– If list is omitted, values of all variables will be saved.

External Subprograms

• Attached after the END PROGRAM statement of

program unit.

– Example: Temperature conversion revisited.

• Note #1: Function name is declared in the main

program and subprogram.

• Note #2: Compiler may not be able to check

references to subprogram.

– Argument type, number of arguments, type of return

value, etc.

Interface blocks

• Internal functions and modules have an ‘explicit

interface’

– Allows compiler to check arguments and results are returned

correctly.

• For external subprograms, an ‘implicit interface’ must be

provided for this functionality

– Page 140 in text for syntax of interface block.

– Looks like a function header in C or C++.

– ‘interface block’ is same as function declarations within the

actual function.

• Example: Temperature-conversion revisited, again.

Subroutines

• subroutine heading

specification part

execution part

END subroutine statement

• Specification and execution sections are the

same as before.

Similar to Functions……

• Designed to perform particular tasks under

control of some other program.

• Same basic form (heading, specification,

execution, END).

• May be internal, module, or external.

• Scope rules apply.

……yet different

• Functions are designed to return a single value.

– Subroutines: several values or no value at all.

• Functions return values as function names.

– Subroutines: return values via arguments.

• Functions are referenced through the function

name.

– Subroutines are referenced by a call statement.

Subroutines

• subroutine heading

specification part

execution part

END subroutine statement

• Specification and execution sections are the

same as before.

Subroutine syntax

• Subroutine heading

SUBROUTINE subroutine-name(formal-argument-list)

• End statement

END SUBROUTINE subroutine-name

• That’s it. Now all you need to know is how to
incorporate them into a program.

Using a subroutine

• CALL subroutine-name(actual-argument-list)

– Arguments must match SUBROUTINE statement in

number and type.

– subroutine-name is not given a type like in functions.

• Examples

– Displaying an angle in degrees.

– Converting coordinates.

Argument association

• Coordinate conversion example.

– R, Theta: Variables are only to be passed to them.

• Not intended to return values.

– INTENT(IN)

– X, Y: Intended only to pass values back to the calling program unit

– INTENT(OUT)

• INTENT(INOUT)

– Used to pass information both to and from the subroutine.

• Note: Because both OUT and INOUT are intended to pass values
back to calling program, the corresponding actual arguments must
be variables!

• Read section 7.2 (subroutines and functions as arguments).

Modules

• Often similar calculations occur in a variety of applications.
– Convenient to use the same sub-program in each of these applications.

• Module: a program unit used to package together type declarations
and subprograms

MODULE Name

CONTAINS

subprogram #1

subprogram #2

etc.

END MODULE name

• Packages the subprograms, called module subprograms, together in
a library that can be used in any other program unit.

Using a module

• Temperature-conversion library

• USE module-name
– Placed at the beginning of the specification section of your main

program.

– All identifiers used in the specified module are imported into the
program unit.

• USE module-name, ONLY: list
– Only identifiers listed are imported.

• USE Temperature, ONLY: Fahr_to_Celsius

Translation to source program

• Two steps

– Compilation

• Source program is translated into an object file (.o extension)

– Linking

• References to functions contained in a module are linked to their
definitions in that module

• Creates the executable program

• Could take up to three steps

1. Separate compilation of the program’s source file, creating an object
file.

2. Separate compilation of the module, creating a different object file.

3. Linking the function calls in the program’s object file to the function
definitions in the module’s object file.

• Creates the executable program.

Examples

• Assume you have a module called
temperature_library.f90 and a main program
temperature_conversion.f90

• gfortran temperature_library.f90 temperature_conversion.f90

• gfortran temperaure_conversion.f90 temperature_library.f90? Still works…..

• gfortran –c temperature_library.f90

gfortran temperature_library.o temperature_conversion.f90

• gfortran –c temperature_library.f90

gfortran –c temperature_conversion.f90

gfortran temperature_library.o temperature_conversion.o

• Last examples used in ‘make’ files.

What are all these file types?

• Program file: contains your main program

• Module subprogram file: contains your function
subprograms.

• Object file (.o): Machine language program.

• Executable: Finished (contains all links), executable
program.

• Module (.mod): Meant to be a portable object, that
doesn’t need to be recompiled.
– Not always the case (more later)

Practice

• Take a *working* version of your CAPE/CIN

program and put your function into a module.

• Compile and run your program to see that it

works as advertised.

