Chapter 4 – Radiative Transfer
Radiative Transfer

• Primary method of energy exchange between the Earth and rest of universe.

• Transfers occur between the atmosphere and Earth, and between layers of the atmosphere.
The Spectrum of Radiation

- Electromagnetic Radiation
 - Travels at speed of light (3×10^8 m/s).
 - Consists of a variety of frequencies and wavelengths.
Quantum Theory

- Electromagnetic radiation is made up of photons, or packets of energy.

- Photon energy = \(W = hf = \frac{hc}{\lambda} \)
 - \(\lambda = \) wavelength
 - \(f = \) frequency
 - \(c = \) speed of light.

- Energy is inversely proportional to wavelength.

- Energy is directly proportional to frequency.
Nomenclature

• Radiant flux: Rate of energy transfer by electromagnetic radiation.
 • Units: Energy/time = J/s = W = Watts.
 • Example: Radiant flux from sun = 3.9×10^{26} W.

• Irradiance: Radiant flux/Area = \(E\)
 • Units: W/m\(^2\)
 • Example: Irradiance at outermost disk of sun.

• Monochromatic irradiance: \(E = E / \lambda\)
 • Units: W/m\(^2\) m = W/m\(^2\) um.
Diffuse and Direct Radiation

• Diffuse Radiation: Radiation emanating from a source that subtends a finite arc of solid angle.
 • Scattered radiation is an example.

• Parallel Beam Radiation: Emission from a concentrated source.
 • Radiance approaches infinity and the angle subtended by the source approaches zero.
 • Direct beam radiation
Measurement of Radiation

• Black and white surface

• Black absorbs radiation, white reflects radiation

• Amount of radiation received and absorbed determines the differences in the rate of increase of temperatures between the two surfaces.

• Pyranometer
Blackbody Radiation

• Hypothetical body comprising a sufficient number of molecules absorbing and emitting electromagnetic radiation in all parts of the spectrum so that:
 • All incident radiation is completely absorbed.
 • Maximum possible emission is realized in all wavelength bands, in all directions (isotropic).

• Planck's law: Amount of radiation emitted by a blackbody.
 • Uniquely determined by its temperature.
Wien’s Displacement Law

• $\lambda_{\text{max}} = 2880 \text{ um K/T}$

• Wavelength of peak emission for a blackbody at temperature T.

• Estimate the temperature of a radiation source from its emission spectrum.
 • If we assume a blackbody source, then knowing the emission spectrum, we can deduce T.
More Blackbody Spectra

Fig. 6.4 Normalized blackbody spectra representative of the sun (left) and earth (right), plotted on a logarithmic wavelength scale. The ordinate is multiplied by wavelength in order to make area under the curves proportional to irradiance. [Adapted from R. M. Goody, "Atmospheric Radiation," Oxford Univ. Press (1964), p. 4.]
Blackbody Spectrum cont.

- Peak for sun is in blue, but asymmetry of spectrum gives more radiation toward yellow side.
- Earth emits @ ~255 K
- Sun concentrated in visible and near infrared, planets and their atmospheres largely confined to infrared.
- Note: Curves barely overlap
 - Treat solar (shortwave) radiation separately from terrestrial (longwave) radiation.
Calculations

• Irradiance at the top of the Earth’s atmosphere

• Equivalent Blackbody Temperature of Sun

• Equivalent Blackbody Temperature of Earth

 • This calculation assumes the Earth does not have an atmosphere and references the image on the next slide
Absorptivity and Emissivity

• Blackbody radiation is an upper limit to the amount of radiation a real substance may emit at a given temperature.
 • Real world radiation < Blackbody

• At any given wavelength, \(\lambda \), we can define the Emissivity, \(\varepsilon \equiv \frac{E_\lambda}{E^{*}_\lambda} \)
 • Emissivity is a measure of how strongly a body radiates at that wavelength.
 • \(\varepsilon_{\text{blackbody}} \equiv 1 \) at all wavelengths.
 • \(0 < \varepsilon_{\text{real substance}} < 1 \)

• “Grey body” emissivity: \(\varepsilon \equiv \frac{E}{E^{*}} = \frac{E}{\sigma T^4} \) and \(E_{\text{grey}} = \varepsilon \sigma T^4 \)
 • “Grey” comes from the neglect \(\lambda \) of wavelength dependence of the emissivity.
 • Most real substances behave as grey bodies and have an emissivity that is different from 1.

• Absorptivity, \(a_\lambda \equiv \frac{\text{irradiance absorbed}}{\text{irradiance incident}} \)
 • “grey body” absorptivity = \(a \)
 • \(a_{\text{blackbody}} = 1 \)
Kirchhoff's law

• Kirchhoff's law: Materials that are strong absorbers at a particular λ are also strong emitters at that λ.

• $a = \varepsilon$

• $a_\lambda = \varepsilon_\lambda$

• Weak absorbers = weak emitters

• Applies to gases like our atmosphere.
Reflectivity and transmissivity

- What happens to the part not absorbed? It is reflected.
- \[E_\lambda \text{ (incident)} = E_\lambda \text{ (absorbed)} + E_\lambda \text{ (reflected)} \]
- Dividing by \(E_\lambda \text{ (incident)} \) yields:
 - \[\frac{E_\lambda \text{ (incident)}}{E_\lambda \text{ (incident)}} = \frac{E_\lambda \text{ (absorbed)}}{E_\lambda \text{ (incident)}} + \frac{E_\lambda \text{ (reflected)}}{E_\lambda \text{ (incident)}} \]
 - \[1 = \frac{E_\lambda \text{ (absorbed)}}{E_\lambda \text{ (incident)}} + \frac{E_\lambda \text{ (reflected)}}{E_\lambda \text{ (incident)}} \]
 - \[1 = a_\lambda + r_\lambda \]
 - Reflectivity, \(r_\lambda = \frac{E_\lambda \text{ (reflected)}}{E_\lambda \text{ (incident)}} \)
 - Large \(r_\lambda \) = small \(a_\lambda \) and vice versa.
- More generally, for non-opaque media, some of the incident radiation is transmitted.
 - Transmissivity, \(\tau_\lambda = \frac{E_\lambda \text{ (transmitted)}}{E_\lambda \text{ (incident)}} \)
 - \(a_\lambda + r_\lambda + \tau_\lambda = 1 \)
Greenhouse Effect

- Solar radiation essentially passes through to surface.
- Atmosphere absorbs some of IR emitted by the surface and emits it back.
- Surface must warm up even faster to emit enough radiation so that output can match the input
 - Radiative equilibrium
Atmospheric Absorption of Solar Radiation

• Absorption of parallel beam radiation is proportional to the number of molecules of gas along the path.
 • For now, we are going to ignore scattering of photons out of the beam.

• This can be expressed as: \(da_\lambda = -dE_\lambda / E_\lambda = -K_\lambda \rho \sec \varphi \, dz \)
 • where:
 • \(da_\lambda \) is the absorption that occurs through the layer.
 • \(\rho \) is the density of the gas
 • \(\sec \varphi \, dz \) is the path length (see online lecture)
 • \(\rho \sec \varphi \, dz \) is the mass per unit area for a small \(dz \) (think about units)
 • \(K_\lambda \) is the absorption coefficient of the gas [m\(^2\)/kg]
 • How efficient the gas is as an absorber
 • Also called the absorption cross-section
 • \(K_\lambda \) is a function of the temperature of the gas, pressure, and composition of the gas.

• There are three ways to change the amount of absorption:
 • Change the density of the gas (more absorbers per unit area)
 • Change the path length
 • Change the absorption coefficient
Beer’s Law and Transmissivity

- See in class lecture deriving Beer’s law and how it relates to the transmissivity

- Beer’s law is an equation for the cumulative absorption or how much of the radiation remains after passing through a given thickness of the atmosphere.
\[\text{Field} \]

[From J. Appl. Meteor., 12, 376, (1973).]

\[\lambda = 0.58 \, \mu m \]

\[\lambda = 0.40 \, \mu m \]
Atmospheric Scattering of Solar Radiation

- $d_{s \lambda} = $ Fraction of parallel beam radiation that is scattered when passing downward through a layer of infinitesimal thickness.

- This can be expressed as: $d_{s \lambda} = -dE_{\lambda} / E_{\lambda} = -K_{\lambda} N \sigma \sec \varphi \, dz$

 where:

 - $d_{s \lambda}$ is the scattering that occurs through the layer.
 - N is the number of particles per unit volume of air (particle density).
 - $\sec \varphi \, dz$ is the path length (see online lecture).
 - σ scattering cross-sectional area of each particle.
 - K_{λ} is the scattering coefficient of the gas [m2/kg]
 - How efficient the gas is at scattering
 - K_{λ} is a function of the size parameter and the refractive index of the particles in the gas.

- There are four ways to change the amount of scattering:

 - Change the number of particles per unit volume.
 - Change the path length.
 - Change the scattering coefficient.
 - Change the scattering cross-section of the particles.

- By following the approach we took with absorption, you can come up with an equation similar to Beer’s law, but for scattering.
Scattering, x, and λ
For size parameters much less than 1, $K_\lambda \propto x^4$ and $K_\lambda \propto \lambda^{-4}$

- Rayleigh scattering of solar (shortwave) radiation.
- Scattered radiation is evenly divided between forward and back-scattered hemispheres.
- $K_\lambda (\text{blue, } \lambda = 0.47 \text{ um})/K_\lambda (\text{red, } \lambda = 0.64 \text{ um}) = (0.64/0.47)^4$
- Short λ light is scattered more than long λ.
- Short λ is preferentially scattered.
 - Responsible for blue sky.
- Longer λ is more readily transmitted
 - Reddish or orange appearance of objects.
 - Especially around sunrise and sunset.
 - Path length through the atmosphere is long.
Scattering, χ, and λ
Microwave Scattering

• Microwave scattering by raindrops also falls in the Rayleigh regime.

• For a given λ, $K_\lambda \propto x^4$.

• Sharp increase in K_λ with increasing drop size.

• Makes it possible to discriminate between precipitation and cloud drops (radar).

• Why not use infrared radiation?
Doppler Radar Bands

- **S band**
 - 8-15 cm wavelength
 - Not easily attenuated
 - NWS radars – 10 cm
- **C band**
 - 4-8 cm wavelength
 - More easily attenuated
 - Smaller dish sizes make them more affordable
 - TV stations
- **X band**
 - 2.5-4 cm wavelength
 - Easily attenuated, useful for short range observation
 - Cloud development
 - DOWs
- **K band**
 - 0.75-1.2 cm wavelength
 - Similar to X band, but even more sensitive
 - Shares space with police radars.
Scattering, x, and λ
\[x > 50, \ K \lambda \approx 2 \]

- Angular distribution of scattered radiation described by principles of geometric optics.

- Scattering of visible radiation by cloud droplets, rain drops, ice particles.

- Rainbows, halos, etc.
0.1 < x < 50

- K_{λ} exhibits oscillatory behavior
- Angular distribution of radiation very complicated and varies rapidly with the size parameter.
- Forward scattering predominates over back scattering.
- Scattering of sunlight by smoke, smog, dust.
Scattering, x, and λ

![Graph showing the relationship between r (in μm) and λ (in μm) with various scattering processes and particle sizes.](image)
Extinction

- Equations for scattering and absorption are very similar.

- In fact, they can be made to be identical with the following equation:

 \[K_\lambda (\text{Extinction}) = K_\lambda (\text{Scattering}) + K_\lambda (\text{Absorption}) \]

- This equation gives the combined effect of scattering and absorption in depleting the intensity of radiation passing through the layer.