Meteorology 3110

Remote Sensing

What is it?

- Measurement using devices not in direct contact with the object they sense.
 - Remote sensing involves observing objects indirectly either actively or passively.
- In-Situ measurements: Devices in contact with the medium they are sensing.
- Anemometer, Satellite, camera, radar, thermometer, windsock, hand in boiling water, lidar, metal detector, x-ray
- In-Situ meaurements: measure atmospheric conditions at discrete locations/points and time.

– Gaps in the observation network.

Types of Sensing

Satellite Observations

- Geostationary : Remains stationary over a specific point on the earth
 - GOES (Geostationary Operational Environmental Satellite)
 - Cover a region of interest defined by the owner.
 - Elevation ~ 22,000 miles above sea level.
 - Less detail than POES, but provides many more images.
- Polar-Orbiting or Low-Earth Orbiting : Track from pole to pole.
 - Do not cover the same area.
 - Cover small strips. Each pass sees an area to the west of previous pass.
 - Sun synchronous: path does not change with respect to sun relative coordinate system.
 - Elevation ~ 600 miles (complete rotation about every 1.5 hours).
 - Passes any point on earth twice a day.
 - NOAA uses two of these so no image is over six hours old.
 - Great detail, but only sample a given area a few times per day.

Visible Images

- Record visible light from the sun that is reflected from cloud, land, oceans, snow, or ice.
 - Albedo.

 $-\lambda = 0.52 - 0.72$ microns.

- Bright clouds indicate a lot of reflecting particles.
- High and low clouds look equally as bright and are often indistinguishable.

Visible Images - Albedos

- Thunderstorm 80-90%
- Cumulus 70%
- Stratus 60%
- Thin stratus 50%
- Cirrus 40%
- Thin cirrus 30%
- Smoke 20%
- Blackbody 0 %

- Fresh snow cover 80%
- White Sands, NM 60%
- Melting snow, salt flats -50%
- Dry, sandy soil 40%
- Clay, granite, glaciers 30%
- Tundra, bare soil 20%
- Oceans, lakes, forest 10%

Visible Imagery

Visible Imagery

Infrared Images

- Record blackbody temperature of an object.
 - Amount of radiation ~ T^4 .
 - Measures λ = 10.2-11.2 microns = 10.2-11.2 µm.
- Shows cloud top temperatures in cloudy regions, and, possibly, surface temperature in clear regions.
- Bright clouds are COLD clouds, which are usually high.
- Low clouds are hard to distinguish from the surface. Why?

Infrared Images

WW2010 (http://ww2010.atmos.uluc.edu/)

Atmospheric Sciences, University of Illinois at Urbana-Champaign

Comparison

IR Imagery

Water Vapor Images

- Integrated measure of moisture in the atmosphere.
 - Measures amount of raditation emitted at 6.7 microns = $6.7 \ \mu m$.
 - Water vapor heavily absorbs radiation at this wavelength.
- Absorption is greatest in the mid/upper troposphere between 600 and 250 mb.
- Good measure of mid/upper level moisture.
- Impossible to draw conclusions about low level moisture.
- Look for regions of changing characteristics (drying/moistening).

Water Vapor Image

Comparison #2

