Divergence, Vorticity, Vertical Motion

Meteorology 311
Fall 2021
Expression of Winds

- Wind barbs (magnitude and direction)
- Meteorological degrees (magnitude and direction)
- Vector Components
- Wind at any point \((x,y)\) and be written as the wind at \((x_0, y_0)\) using a Taylor expansion.
 - Three main terms emerge
 - Divergence, vorticity, deformation
Divergence

• $\delta > 0$: Expansion of a parcel
 – After construction zone

• $\delta < 0$: Compression of a parcel
 – Before construction zone

• Calculation of divergence/convergence is difficult when not on a Cartesian grid.
 – What do we do?
Natural Coordinates

- Rotate axis so X-Axis points along the wind, Y-Axis is 90° to the left.

- \(\hat{s} \) is aligned with wind, \(n \) is positive to the left.

- \(u = |V| \cos \theta_b \), \(v = |V| \sin \theta_b \)

- \(\theta_b \) is angle which you have rotated the coordinate system.
Divergence (Natural Coordinates)

• Terms are usually both large and have opposite sign.

• Hard to tell if there is divergence (convergence) just because there is confluence (diffluence).
Vorticity (Natural Coordinates)

• Spin of a parcel

• Horizontal spin is most important to meteorologists.
 – z component.

• Counterclockwise spin: positive vorticity
• Clockwise spin: negative vorticity
• Cyclonic vorticity: having the same direction of rotation as the Earth.
• Anticyclonic vorticity: Opposite direction.
Why is this important?

• Divergence/Convergence
 – Low level convergence \rightarrow Upward motion
 • Clouds and precipitation
 • Continuity equation
 – Low level divergence \rightarrow Downward motion
 • Fair weather

• Vorticity
 – PVA \rightarrow Upward motion
 • Downstream of a vorticity maximum
 • Clouds and precipitation
 – NVA \rightarrow Downward motion
 • Fair weather
 – Usually looked at high up in the atmosphere.
Vertical Motion

• Synoptic scale
 – u and $v \sim 10$ m/s
 – $w \sim 1$ cm/s

• Weather ballons: $\sim 10\%$ error in measuring horizontal winds (1 m/s)
 – Not good enough.
 – Effectively impossible to measure w.

• What do we do?
What do we do?

• Diagnose \(w \) from other relationships.

• If you have \(w \) or \(\omega \) in an equation, you can solve for it.

• Remember \(\omega \)?
 – Think about the sign.

• Five techniques for estimating \(w \) or \(\omega \).
Methods

- Kinematic Method
 - Continuity equation.
 - Most commonly used.

- Adiabatic Method
 - Thermodynamic equation.

- Isentropic Method
 - Isentropic coordinate (adiabatic motion)

- Vorticity Method
 - Vorticity equation.

- Satellite Method
 - Determine cloud-top temperature changes with time.