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I n April 2000, a new dynamical seasonal prediction
system was introduced at the National Centers for
Environmental Prediction (NCEP; the acronyms

used in this paper are summarized in the appendix).
The transition to the new system was hastened by a
computer fire in September 1999 and subsequent
changeover from a Cray C90 to an IBM-SP computer
system. This article will be a reference for people who
are using the NCEP numerical seasonal forecast
products.

The first-generation dynamical seasonal prediction
model was based on the notion that the seasonal pre-
dictability in the Northern Hemisphere extratropics

mainly stems from equatorial tropical Pacific sea sur-
face temperature anomalies (SSTA). This predictabil-
ity motivated the NCEP Coupled Modeling Project
to couple the atmospheric model with a Pacific basin
ocean model (Ji et al. 1995). A major effort was made
to build an ocean data assimilation system and a
coupled prediction system to produce skillful SSTA
forecasts over the tropical Pacific and to improve the
physical parameterizations of the atmospheric model
to better simulate the middle-latitude atmospheric
response to anomalous tropical SST forcing. This
approach led to successful wintertime seasonal pre-
dictions (Ji et al. 1995; Kumar et al. 1996; Behringer
et al. 1998; Ji et al. 1998).

The second-generation dynamical seasonal predic-
tion is designed 1) to further improve the coupled
modeling system to refine wintertime prediction, and
2) to take advantage of additional sources of predict-
ability during other seasons. The latter requires incor-
porating new physical processes. In particular, in re-
cent years the effect of soil moisture shows promise
of enhancing summertime predictability (e.g., Koster
et al. 2000). Forcing by snow and sea ice may also
enhance predictability. Atmospheric initial conditions
may also help increase prediction skill. Incorporation
of these processes in a dynamical prediction system
requires taking care with the initialization procedure.

The dynamical seasonal prediction is still a basic
research problem, because our understanding of the
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atmosphere’s response to external forcing remains
insufficient. Increased understanding usually requires
additional idealized experiments. However, opera-
tional prediction emphasizes practical aspects of the
seasonal forecast and places less emphasis on ideal-
ized experiments. Additional coordination between
operational and research efforts is absolutely neces-
sary to improve the dynamical seasonal prediction
(Roads et al. 2001).

There are at least four major requirements for a
successful dynamical seasonal prediction system:

1) accurate and efficient models of atmosphere,
ocean, land, and sea ice that are coupled in a
physically consistent manner;

2) initial conditions for the atmosphere, ocean, land,
and sea ice;

3) an ensemble prediction methodology; and
4) a strategy for systematic error correction.

The first two components are most basic to
successful seasonal prediction and are closely tied to
each other through data assimilation of a land–
atmosphere–ocean system. The model must also run
efficiently on a given computer resource and prefer-
ably also run on a variety of computers, since dy-
namical seasonal prediction requires many lengthy
integrations. Furthermore, portability of the model
codes to different computer platforms eases technol-
ogy transfer between research and operations. We
will describe the new NCEP seasonal prediction sys-
tem along the line of the requirements stated earlier.

The seasonal forecast system at
NCEP adopts a “two tiered” ap-
proach. First, SST anomalies over the
tropical Pacific are predicted using a
coupled ocean–atmosphere model.
This tier-one forecast for SST is run
weekly using the ocean initial condi-
tions produced from the ocean data
assimilation system. A total of four
runs are made each week using dif-
ferent atmospheric initial conditions
(but the same ocean initial condi-
tions), in order to account for some
uncertainties due to “weather” noise
in the atmosphere. The SST anoma-
lies are obtained by removing the
coupled model climatology esti-
mated from hindcasts over the 1982–
98 period. Over a period of 1 month,
the weekly SST forecasts aggregate to
a 16-member ensemble from which

the ensemble mean of the SST forecasts is derived. An
example of an ensemble SST forecast and the corre-
sponding observation is shown in Fig. 1.

The second tier of the seasonal forecast system
consists of ensemble seasonal forecasts using the at-
mospheric forecast model alone. The ensemble mean
SST forecast obtained from tier one of the forecast
system is used as a lower boundary condition to force
the seasonal atmospheric model in making the en-
semble seasonal forecasts. Since the coupled model
forecasts are for the equatorial Pacific region only, we
combine the observed SST anomalies outside the
equatorial Pacific domain with the forecast SST
anomalies to form global SST anomaly fields at the
initiation of the tier-two forecasts. The observed SST
anomalies outside the equatorial Pacific are damped
with an e-folding timescale of 3 months for the tropi-
cal region (other than the Pacific) and an e-folding
timescale of 1 month for the extratropics region dur-
ing the forecast integration. The observed SST anoma-
lies used for this purpose are from the NCEP weekly
SST analysis (Reynolds and Smith 1994). The tier-two
forecast model predicts both soil wetness and soil
temperature throughout the integration period.

The sea ice model is not yet incorporated into the
current system. The current plan is to collaborate with
GFDL to use their existing sea ice model.

Atmospheric model. The basic dynamical framework of
the model is based on the spectral method as described
in Kanamitsu (1989). The reduced grid of Williamson
and Rosinski (2000) was recently adopted to save

FIG. 1. An example of ensemble SST anomaly forecast over the Niño-
3.4 area. Observation is shown as the black line.
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computer time without significantly sacrificing accu-
racy. The reduced grid technique defines the number
of zonal waves that can be reduced from the full reso-
lution at given latitude by specifying the desired ac-
curacy to the polynomial multiplication in the
Legendre transform calculations. The use of single-
digit accuracy saved the computer resources by about
30% at T62 resolution without excessively degrading
the long integration in higher latitudes (where the
number of grid points is reduced).

The model resolution during April 2000 to March
2001 was unreduced T42 (about 300 km) resolution
with 28 layers in the vertical. The horizontal resolu-
tion was increased to a T62 reduced grid version
(about 200-km resolution) with the same number of
vertical layers in April 2001.

The physical processes in the model originated
from the NCEP–DOE reanalysis (hereafter referred

to as Reanalysis-2) version of the NCEP Medium-
Range Forecast (MRF) model (Kanamitsu et al. 2001;
manuscript submitted to Bull. Amer. Meteor. Soc.). In
Table 1, a detailed comparison of model physics is
made between the old and new models and the op-
erational MRF. Major improvements over the first
version are the use of a more physically based
Arakawa–Schubert-type convective parameterization,
a multilayer soil model with more complex surface
layer physics, and refined planetary boundary layer
physics. The physics of the model was modified fur-
ther from the Reanalysis-2 version based on the re-
sult from a series of ENSO response simulation ex-
periments described below.

When the first version of the seasonal prediction
model was adapted from the operational MRF model
in early 1990, the response of the tropical convection
to SSTA, key to successful seasonal prediction, was

Resolution T42L28/T62rL28 T42L18 T170L42

Physics

Convection RAS (Moorthi and Kuo (Kuo 1965) SAS (Pan and
Suarez 1992) Wu 1995)

SW radiation Chou (1992) Lacis and Hansen (1974) Chou (1992)

LW radiation Chou and Suarez Fels and Schwarzkopf Fels and Schwarzkopf
(1994) (1975) (1975)

Clouds Slingo (1987) Slingo (1987) Function of predicted

liquid water

PBL Nonlocal (Hong and Local (Tiedtke 1983) Nonlocal (Hong and
Pan 1996) Pan 1996)

Gravity wave drag Alpert et al. (1988) Alpert et al. (1988) Kim and Arakawa (1995)

Land processes OSU two-layer soil (Pan Bucket (Miyakoda OSU two-layer soil (Pan
and Mahrt 1987) and Sirutis 1986) and Mahrt 1987)

Orography Smoothed mean Smoothed mean Mean

Ozone Climatology Climatology Predicted

Coding

Portability Yes No No

MPP 2D decomposition No 1D decomposition

TABLE 1. Comparison of the model physics between three models. SFM is the new version of the
seasonal forecast model, B9X is the old version, and MRF is the current operational medium-
range prediction model.

SFM B9X MRF
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found to be poor in long-term integrations. Kumar
et al. (1996) made considerable effort to correct this
problem and several modifications were applied to
the Kuo convective parameterization scheme to pro-
duce a more realistic model response to the equato-
rial Pacific SSTA. One correction was the application
of an SST threshold that triggered convection
(Kumar et al. 1996).

Sometime around 1995, the simplified Arakawa–
Schubert (SAS) convection scheme (Pan and Wu
1995) replaced the Kuo scheme in the operational
MRF and it was used in the NCEP–NCAR Reanaly-
sis (hereafter referred to as reanalysis-1) because it
improved prediction of tropical and extratropical
precipitation in the short- and medium-range fore-
casts (Kalnay et al. 1996). We designed an idealized
experiment to examine the capability of the SAS con-
vection scheme in long-term integrations. In the ex-
periment, a large-amplitude canonical warm ENSO
SSTA of up to 4 K was placed at the western equato-
rial Pacific. The full annual cycle of SST was obtained
by adding the (time invariant) anomaly to the clima-

tological seasonal cycle. Two 10-yr atmospheric in-
tegrations were made, one using the anomalous SST
and the other with the climatological (background)
SST. The difference between these two experiments
was considered to be the model response to the SSTA
forcing and it was compared to the composite of warm
ENSO events from observations. This experiment was
designed to test the ability of the model to simulate
the most distinct large-scale atmospheric response to
El Niño forcing. Therefore, we focused on the con-
spicuous large-scale patterns of tropical precipitation
anomaly, and the intensity and phase of the Pacific–
North American (PNA) pattern in the upper atmo-
sphere during the winter season.

The experiments revealed that the SAS scheme has
a poor PNA response, particularly over the northern
United States and Canada (Fig. 2a). The correspond-
ing tropical precipitation anomaly appears as the
zonal band as seen in Fig. 3a, indicating the tropical–
extratropical forcing is more zonally symmetric. In
addition, the dry anomaly over Indonesia is weak
compared to the composite (Fig. 3d), making the

FIG. 2. 200-hPa height anomaly (m) from the idealized ENSO experiment: (a) simplified Arakawa–Schubert
scheme, (b) relaxed Arakawa–Schubert scheme, (c) CCM3 Zhang and McFarlane scheme, and (d) observed
composite of warm ENSO anomaly (DJF of 1982/83, 1987/88, 1991/92, and 1997/98).
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forcing zonal over the equatorial zone. This forcing
pattern may be related to the poor PNA response of
the SAS scheme. We next tested the relaxed
Arakawa–Schubert (RAS) convective parameteriza-
tion scheme (Moorthi and Suarez 1992), which pro-
duces reasonable responses in other models (e.g., see
Shukla et al. 2000). As shown in Fig. 2b, the RAS
scheme significantly improved the PNA response.
Zonally asymmetric forcing seems to produce a more
realistic wave train.

The main differences between the SAS and RAS
are the clouds and the treatment of downdrafts. The
SAS allows only one type of cloud, while RAS allows
clouds with different tops. The SAS considers satu-
rated downdrafts based on empirical formulation,
while RAS (as implemented) does not incorporate any
downdraft mechanisms. These differences resulted in
different vertical heating and moistening profiles and
changed the tropical precipitation. Recently,
downdraft mechanisms were introduced in the RAS
scheme (Moorthi and Suarez 1999). A preliminary
simulation with the new RAS suggested that the lack
of downdrafts in RAS may not have been a serious
shortcoming.

The same idealized ENSO experiment was per-
formed with the convection scheme (Zhang and
McFarlane 1995) used in NCAR Community Climate
Model version 3 (CCM3) and the results are shown
in Figs. 2c and 3c. With this scheme, the PNA re-
sponse is excellent while the precipitation anomaly is
more zonal (similar to that of SAS). The main differ-
ence in the precipitation anomaly of the CCM3 run
from that of SAS is in the magnitude of the dry
anomaly over Indonesia, which is as large as that of
the RAS. These experiments suggest that the heating
anomaly over Indonesia may be crucial to the posi-
tive height anomaly over the United States.

The PNA response is not the only factor that de-
termines the performance of the model. Two other
key factors are noted here; one is the systematic er-
ror of the model, and the other is the intraseasonal
oscillation. In the current version of the seasonal pre-
diction system, we focused on the systematic error,
and left the intraseasonal oscillation for future im-
provement. The systematic error of the prediction is
customarily corrected after the fact, as will be dis-
cussed later, but the dynamical effect of the system-
atic error during the model integration could be one

FIG. 3. Same as in Fig. 1 but for precipitation (mm day-1).
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of the reasons for poor model performance (Kumar
et al. 1996).

The Reanalysis-2 model suffers from a warm bias,
especially in the polar regions and over continents,
which was inherent in the MRF model. An effort was
made to reduce these errors in the climate simulations
by performing detailed surface energy budget com-
parisons with the Reanalysis-2. The analysis showed
that the downward longwave radiation at the surface
was overestimated by several tens of watts per meter
squared over the Northern Hemisphere continents.
This overestimate was traced to a deficiency in the
formulation of clouds. The empirical returning of the
clouds dramatically reduced the warm bias (Fig. 4).
We also implemented M.-D. Chou’s longwave radia-
tion scheme (Chou and Lee 1996) and the original
Slingo cloud scheme (Slingo 1987), since the combi-
nation of these two also reduced the warm bias. The
improvement was considered to be due to 1) the dif-
ference in the handling of cloudiness between the
MRF (Fels and Schwarzkopf 1975; Schwarzkopf and
Fels 1985, 1991) and Chou and 2) the treatment of
abnormal water vapor absorption. For the treatment
of clouds, the Fels–Schwarzkopf radiation scheme
uses maximum cloud overlap and the Chou scheme
uses a combination of maximum and random over-
lap. The use of maximum-random overlap effectively
decreased the cloudiness in the Chou scheme, thus
leading to the reduction of warm bias (Y.-T. Hou
2001, personal communication). The handling of the
abnormal water vapor absorption also explains some
of the warm bias in the Fels and Schwarzkopf scheme
(F. Yang 2001, personal communication). More study
is needed to identify the real cause of the differences.

Another crucial factor in the warm bias was related
to the specification of orography. In medium-range
predictions, it is well known that enhanced orogra-
phy increases forecast skill (Jarraud et al. 1988). The
enhancement is particularly important for lower-
resolution models (ranging from T40-T106) during
winter. The idealized warm ENSO experiments de-
scribed earlier were again performed to test the im-
pact of orography on seasonal integrations. The dif-
ference in the PNA response was relatively minor,
with a slight westward phase shift in the PNA pattern
with an enhancement of orography. The greatest im-
pact of the orography was found in the zonal mean
error during the summer time. It was apparent that
the enhanced orography acted as an elevated heat
source and resulted in a warm bias. The degradation
of the summer forecast by the enhanced orography
for T40 and T62 resolution is also noted by Jarraud
et al. (1988), but not the bias problem.

Further testing of the orography was performed
with different smoothing and enhancement combina-
tions, and it was determined that the smoothed mean
orography was the best choice for reducing the warm
bias without greatly influencing the PNA response.
These orography experiments imply that the changes
made to improve the medium-range prediction may
not necessarily improve the prediction at seasonal
timescales. The strong nonlinearity in the long-term
integration makes it very difficult to apply the expe-
rience in medium-range prediction to longer-range
integrations.

FIG. 4. DJF mean zonally averaged temperature differ-
ence (K) between model simulation and Reanalysis-2:
(a) control integration with RAS convective parameter-
ization and enhanced orography, and (b) integration
with modification in the cloudiness parameterization.
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Land model. The land model used in the new system
is based on the Oregon State University land model
(Pan and Mahrt 1987). Recent changes to the origi-
nal scheme are found in Chen et al. (1996). The model
has two soil layers and predicts soil temperature and
water content as well as canopy water content. The
vegetation type and cover and soil type are taken from
the Simple Biosphere model climatology (Dorman
and Sellers 1989). These parameters are a function of

space and season. Simple snow physics is also in-
cluded. The old version used a bucket model
(Miyakoda and Sirutis 1986), which had a tendency
to generate extreme of soil wetness states. The impor-
tance of the complexity in the land model is discussed
by Garrat (1993).

The land model is currently coded as a part of the
atmospheric model, thus taking full advantage of the
model portability to multiple platforms. However, the

The computer code of the
Reanalysis-2 model was exten-
sively modified to make the
model run on multiple platforms
with single and/or multiple shared
memory machines. The code was
improved further to run on a
massively parallel processor
(MPP) machine using Message
Passing Interface (MPI) routines.
All the changes are incorporated
using a preprocessor technique
such that the same original code
works on single and multiple
processors as well as on MPP
platforms. All the model changes
are compared against the single
node computation to ensure that
the result is bit-by-bit equivalent
(assuming that the compiler is the
same). The code was designed
carefully in such a way that
reproducibility of the computa-
tion for shared memory and MPP
computers was guaranteed in all
processor configurations. For the
modification of the code to the
MPP platforms, two-dimensional
decompositions are used for both
spectral and grid-point space.
This approach made the model
flexible to run on any number of
processors available. Since
climate models tend to run at a
relatively low resolution, and the
efficiency of the computation on
the MPP machines tends to
quickly saturate with increasing

number of processors, this
flexibility is very important for a
seasonal prediction model. The
model has been tested on multiple
platforms ranging from Cray, SGI,
SUN, and DEC to Origin 2000,
T3E, IBM-SP, and Fujitsu MPP
(Juang and Kanamitsu 2001)
machines, and
has been
demonstrated
to be very
efficient. For
example, the
T62L28
reduced grid
version of the
model requires
about 20 s of
wall-clock time
to make a
1-day forecast
on an IBM-SP
machine using
64 processors.
This efficiency
makes it
possible to
conduct a large
number of
long-term
integration
experiments
and operational
runs.

The atmo-
spheric model
system is now

FIG. SB1. An example of the graphical display of a
probabilistic 850-hPa temperature forecast for JJA
2001. Initial condition is May 2001. From top to bot-
tom, probability of falling into the above normal, near
normal, and below normal categories.

placed under the Concurrent
Versions System (CVS) server.
This allows the concurrent
development of the model code
by multiple developers. The CVS
server is accessible from outside
NCEP and is released to inter-
ested scientists upon request.

MODEL COMPUTER CODE
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lack of modularity makes it difficult to exchange the
package with other land models. This will be im-
proved in the future.

Ocean model. The ocean model is a Pacific basin ocean
general circulation model (GCM) that covers the do-
main 45°S–55°N and 120°E–70°W. This model was
originally developed by Bryan (1969) and Cox (1984)
and subsequently modified by Philander et al. (1987).
The horizontal resolution of the model is 1.5° in the
zonal direction and 1/3° in the meridional direction
between 10°S and 10°N, linearly increasing to 1° be-
tween 10° and 20°, and 1° poleward of 20°N and 20°S.
The model has 28 layers in the vertical. This has been
our standard configuration since the early 1990s.
Further details of the ocean model configuration can
be found in Ji et al. (1995). The model is coded to run
on shared memory (symmetric multiprocessing) par-
allel computing architecture. This ocean model is
coupled to a T42, 18-level version of the atmospheric
model similar to that described earlier. The oceanic
and atmospheric models are “one-way anomaly
coupled”: the total SST from the ocean is given to the
atmosphere whereas the anomalies of momentum,
heat, and freshwater fluxes from the atmosphere are
used to force the ocean model. Further details of the
coupled model can be found in Ji et al. (1998).

INITIAL CONDITION. Atmospheric. Seasonal pre-
diction has been considered as a boundary forcing
problem rather than an initial value problem, and
therefore, atmospheric initial conditions have been
largely ignored. Most seasonal predictions use long-
term simulations, such as Atmospheric Model
Intercomparison Project (AMIP) runs, where ob-
served SSTs are given as a boundary condition. The
initial condition of the forecast is taken from the end
of the simulation. This method has the advantage of
eliminating the initial adjustment for the atmosphere
but the initial conditions have no relation to the ob-
served atmospheric state.

In the new seasonal prediction system, real-time
T62L28 atmospheric analysis from the operational
global data assimilation (Kanamitsu 1989) is utilized,
in contrast to running in the AMIP mode as in the
previous system. Although there is no concrete evi-
dence that the atmospheric initial condition has any
impact on seasonal prediction, such a possibility does
exist. Atmospheric initial conditions contain both
high-frequency and low-frequency components.
Examples of low-frequency modes include the PNA
and components of North Atlantic oscillation (NAO)
and Arctic Oscillation (AO) modes. If the model can

predict (or maintain) these low-frequency modes, at-
mospheric initial conditions may be of some impor-
tance. But these initial conditions may lack impact due
to large systematic errors, which distort the low-
frequency part of the atmospheric variability during
the early part of the integration.

There is an additional reason for using atmo-
spheric analysis as an initial condition. At NCEP,
numerical predictions for different lead times (short
range, medium range, week-2, month, and season) are
produced by several different model systems and ac-
cordingly these forecasts suffer from discontinuities.
Using the same model and the same initial condition
for short to seasonal range prediction would eventu-
ally eliminate this discontinuity, and instead create a
“seamless” suite of products. The use of atmospheric
analysis for the initial condition of seasonal predic-
tion is one step toward this goal.

Land surface. While the importance of soil wetness to
summer and spring predictability is recognized, lack
of observations in most regions makes it difficult to
incorporate soil moisture into the operational fore-
casts. The same applies to snow depth. The water
equivalent snow depth is a major factor in soil wet-
ness during spring through snow melt. Again, obser-
vations are scarce with the exception of snow cover,
which cannot be easily converted to snow depth.

Currently, the best soil wetness and snow depth
“analyses” are derived from a land hydrology model
with modeled or observed precipitation and surface
energy fluxes. This is the Land Data Assimilation Sys-
tem (LDAS; Mitchell et al. 2000), which is similar to
atmospheric data assimilation, but without insertion
of observed soil parameters. Therefore, the product
is strongly dependent on the accuracy of the hydrol-
ogy model. The method, however, has an advantage
of providing model-consistent land conditions, be-
cause the same hydrology model is used to obtain the
initial condition and eliminating the initial adjust-
ment problem in the land hydrology (which may have
very long timescales of months to years). Since the
global soil wetness observations are extremely sparse,
this is the best method available at present. The adop-
tion of this method implies that the seasonal predic-
tion system requires its own data assimilation for land
surface initial conditions, just like the medium-range
prediction system requires its own atmospheric data
assimilation as an essential part of the prediction
system.

In Reanalysis-2, observed pentad precipitation
forced the land hydrology model, similar to the LDAS
procedure. The resulting soil wetness analysis was far
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superior to those used in Reanalysis-1. Since the sea-
sonal prediction model is similar to the Reanalysis-2
model, this soil wetness analysis is ideal for land sur-
face initial conditions in the NCEP seasonal forecast
system (at least for forecast runs in the 1979–99 pe-
riod when the Reanalysis-2 product is available).

In the new seasonal prediction system, climatologi-
cal soil wetness and snow from the Reanalysis-2 is
used initially, since the real-time global soil wetness
analysis is not yet available. We are hoping to extend
the Reanalysis-2 to real time for obtaining these ini-
tial conditions sometime in 2002. From Fig. 5, it is
apparent that the use of the Reanalysis-2 soil wetness
condition significantly improves the 1-month lead
2-month-averaged 2-m temperature prediction.

Vegetation cover and types are other factors that
can provide forcing over land. Although these param-
eters do not vary significantly from one year to the
next, they vary appreciably on timescales of decades.
Since the hindcasts over the 1979–99 period are an
essential part of the seasonal prediction, as will be
discussed later, the change in these parameters must
be accurately incorporated into the system. However,
due to the lack of observed historical vegetation cover,
a climatological distribution is currently used in all
of our integrations.

Oceanic. The initial conditions for the ocean are ob-
tained from an ocean data assimilation system that
was originally developed at NOAA’s Geophysical
Fluid Dynamics Laboratory. The ocean data assimi-
lation system uses a three-dimensional variational
scheme developed by Derber and Rosati (1989). This
system was implemented at NCEP in the early 1990s
(Ji et al. 1995) and subsequently improved to include
assimilation of sea surface height observations as well
as temperature observations (Behringer et al. 1998).
The present system assimilates real-time, in situ sub-
surface ocean temperature observations collected
from NOAA’s operational ENSO observing system,
and SST and sea surface height variations observed
from satellites. The ocean data assimilation system is
running in real time once each week to produce
weekly ocean analyses and initial conditions for the
coupled forecast model.

Ensemble forecasts. Because it is inherently probabilis-
tic, seasonal prediction must use an ensemble method.
However, the rationale for ensemble prediction is dif-
ferent for short-to-medium-range prediction than for
seasonal predictions. In the former, ensemble aver-
age helps sample the uncertainty in the initial condi-
tion. In the latter, the ensemble prediction samples

the range of outcomes of the seasonal mean atmo-
spheric state.

The requirement for the number of ensemble
members has been debated by many (e.g., Kumar and

FIG. 5. An example of the impact of soil wetness initial
conditions. Comparisons of the near-surface air tem-
perature skill scores (%) from 10-member ensemble
18-yr (1979–96) hindcasts for runs with climatological
land conditions and with runs with the Reanalysis-2 soil
wetness initial conditions. For reference, the anomaly
persistence forecast is also presented: (top) anomaly
persistence, (middle) forecast with analysis soil wetness
initial condition, and (bottom) forecast with climato-
logical soil wetness initial condition.
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Hoerling 2000), and the ensemble size is believed to
depend on the magnitude of the external forcing. An
order of 10 or more is considered to be reasonable for
the estimate of the first moment, and some second
moments (Kumar et al. 2000), which increases dra-
matically for the correct estimates of second and
higher moments (Sardeshmukh et al. 2000). The
number is practically limited by available computer
resources. In the new system, we have chosen 20
members for the forecast. The corresponding initial
conditions are chosen from 5 days prior and after the
beginning of the month at 12-h intervals.

Since ensemble averaging removes seasonal mean
atmospheric noise, the amplitude of the ensemble
mean anomaly forecast tends to be less than the ob-
served amplitude. It is important to recognize this

difference in amplitude when the ensemble mean is
used for seasonal forecasting.

Systematic error correction. There is one practical but
important procedure left to describe in the seasonal
prediction system: the systematic error or bias of the
model. The systematic error of the numerical model
is of the same magnitude as a moderate anomaly (up
to 100 m for 200-hPa height) as shown in Fig. 6, and
it degrades the model forecast enough to make the
direct model output very difficult to use. In order to
correct this error, a standard procedure is to calcu-
late anomalies from “model climatology” instead of
from observed climatology. This procedure is equiva-
lent to making a systematic error correction to the
model prediction, because the difference between the

FIG. 6. 200-hPa height systematic error (m) for JFM computed from 1980–2000 hindcasts. (top left) Sep initial
conditions, (top right) Oct initial conditions, (bottom left) Nov initial conditions, and (bottom right) Dec initial
conditions. Note that the systematic error is not strongly dependent on the forecast lead time.
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model climatology and the observed climatology
(which is the systematic error of the model) is sub-
tracted from the model forecast. This process signifi-
cantly increases the forecast skill of the model. An
example of the effect of systematic error correction
is presented in Figs. 7a and 7b, where the anomaly
correlation scores of 500 hPa are compared for NDJ,
DJF, JFM, and FMA periods over North American
region for the last 21 yr. The systematic error correc-
tion improves the 21-yr average scores from 0.074 to
0.276, 0.112 to 0.365, 0.186 to 0.375, and 0.261 to
0.318 for the four 3-month means. The systematic
error of the model is easily calculated as a long-term
mean from the simulation if the forecast is running
in an AMIP mode. In the forecast mode with analyzed
atmospheric initial conditions, it is more problematic
because the model atmosphere goes through initial
adjustment processes and the systematic error be-
comes a function of forecast lead time (as well as of
the initial month). The best method to obtain model

climatology is to make a large number of past case
predictions (i.e., hindcasts).

In both situations, the most serious problem of
using model climatology is that it places severe restric-
tions on the model updates. This is because every time
the model physics and/or initial surface conditions
change, the systematic error changes as well, and the
model climatology must be recalculated. The compu-
tation of model climatology requires large amounts
of computer resources, restricting frequent changes
to the model. To the model developer, this is a very
serious practical restriction. A similar struggle devel-
oped between modeler and model user several de-
cades ago for short-range predictions, when the use
of model output statistics (MOS) prevented frequent
changes to the forecast model.

In the new system, we decided to include hindcasts
in the operational real-time forecast. Ensemble
hindcasts for the same month from the last 21 yr are
made before the real-time forecasts start, so that the

a) b)

FIG. 7. Effect of the use of a different climatology for the anomaly correlation calculation: (a) anomaly correla-
tion of 500-hPa height over the PNA region using Reanalysis-1 as a climatology, and (b) using average of 21-yr
10-member ensemble forecasts as a climatology. The correlation for each year is computed from the mean of
the 10-member ensemble forecast.
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model climatology for that month is ready. Since
real-time forecasts are done once a month, there is
ample time to make the hindcasts prior to the real-
time forecasts. This procedure allows the model to be

updated when needed, thus
providing flexibility to the
model developers. The
model has already been up-
dated twice since April
2000, to reduce the system-
atic warm bias and to fix
other errors. The short-
coming of this approach is
that the model may not re-
main fixed long enough to
yield performance over an
annual cycle. However, this
should not cause any prac-
tical problems for monthly
operational forecasts.

In the current setting,
we use 10-member en-
sembles (instead of 20 in
the real-time forecast) in
the hindcasts, starting at
0000 and 1200 UTC of days
1–5 of each month. The
hindcasts use observed
SSTs during the integra-

tion, which provides the upper limit of the model
skill. The initial conditions of soil wetness and snow
are climatology from the Reanalysis-2 for both
hindcasts and forecasts since real-time analysis of
these fields are not available for forecast yet. This pro-
cedure assures that the hindcast climatology is con-
sistent with the forecast. The system does not include
vegetation variations, and sea ice cover is climatology.

The hindcasts are also important in providing
model performance history. They can be used to cre-
ate geographically varying “skill masks” based on the
global coverage of the temporal skill. They can also
be used to create a type of “composite skill mask” to
find the model skill for particular conditions, such
as warm or cold ENSO events. Currently, NCEP’s
Climate Prediction Center (CPC) combines dynami-
cal and statistical prediction methods with their own
skill masks as weighting factors to make the official
monthly and seasonal long-lead outlooks.

MODEL PERFORMANCE. Interannual variability
in the AMIP runs. With the changes to the Reanalysis-
2 version of the atmospheric model based on ideal-
ized ENSO experiments, the model needs to be fur-
ther tested in more realistic conditions. For this
purpose, several 50-yr AMIP runs were made with
various model configurations. The detailed responses
of the models were examined in two ways: one to look

FIG. 8. Observed NAO and PNA modes (m) used to obtain Fig. 9. Modes are
computed from 1950–99 Reanalysis-1.

FIG. 9. Ratios of the amplitude of NAO and PNA modes
between simulated and observed 500-hPa height for
various experiments from 50-yr AMIP runs. EOF mode
1 and 2 are shown in Fig. 8 and correspond to NAO
and PNA modes, respectively. Each bar denotes differ-
ent experiment. The detail of each experiment is not
relevant to the paper and is not explained.
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at the strong warm and cold ENSO composites and
to compare them to the observations, and the other
to examine the atmospheric low-frequency variabil-
ity. The former evaluation was subjective and the re-
sults are not shown here. In the latter, we projected
the model-simulated interannual variability onto the
leading modes of observed interannual variability
(mainly NAO mode and PNA mode; Fig. 8) for vari-
ous model configurations and assessing their projec-
tion amplitude. Figure 9 shows the ratio of the am-
plitude of the modes for various experiments from
50-yr AMIP runs. Modes 1 and 2 correspond to the
NAO and PNA modes, respectively. The purpose of
the figure is to present the variability of this ratio from
experiment to experiment, and detailed description
of each experiment is intentionally avoided. The varia-
tion in the projected amplitude among experiments
is considerable and some model configurations are ap-
parently better than others. One point to note is the
stability of these computations. We examined this by
using the 10-member ensemble 50-yr AMIP runs all
performed with exactly the same model. Figure 10
shows the variability of the scores among the ensemble
members. It indicates that the variability can be as
large as the variations between the different model ex-
periments. Therefore, the skill comparison from one

50-yr simulation does not represent overall model
performance. For this reason, this verification method
was only used as a guidance in testing whether a par-
ticular version of the model performs significantly
worse than others.

Hindcast performance. The performance of the atmo-
spheric model is better represented by examining the
skill of the hindcasts forced with observed SSTs.
Figure 11 shows 10-member ensemble hindcast
anomaly correlations of the 500-hPa height over the
PNA region during the winter–spring season. These
hindcasts were started from the first 5 days of Novem-
ber, 12 h apart, for the period 1979–99, and four lead
times of 1–4 months, corresponding to DJF, JFM,
FMA, and MAM forecasts are presented. The 21-yr
mean anomaly correlation is highest in JFM (0.383).
The score for some individual years exceeds 0.8. Note
that these scores are comparable to those of other sea-
sonal prediction models (Shukla et al. 2000; Kang et

FIG. 10. Same as in Fig. 9 but computed from 10-mem-
ber 50-yr ensemble AMIP runs made on various ma-
chines and slightly perturbed initial conditions. Each bar
corresponds to each ensemble member. O2k stands for
the run made on the CMP Origin 2000 machine, FSU
stands for the run made at Florida State University’s
COAPS using their Origin 2000 machine, ibm stands
for the runs made on NCEP’s IBM-SP machine, and nav
stands for the runs made on the U.S. Navy’s origin 2000
machine.

FIG. 11. Anomaly correlation of 3-month average 10-
member ensemble mean 500-hPa height hindcasts for
DFJ, JFM, FMA, and MAM over the PNA sector. Initial
conditions are November of each year. Each bar is com-
puted from a 10-member ensemble mean.
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al., personal communication). The skillful hindcasts
are due to the good response of the tropical precipi-
tation anomaly to observed SST anomalies over the
tropical Pacific (Fig. 12) with the 21-yr mean anomaly
correlation ranging from 0.526 to 0.479 and ap-
proaching 0.9 in some individual years. As a more
strict comparison, we performed the same skill score
computations as those performed by Anderson et al.
(1999). They compared 700-hPa height forecast skill
over North American region between the GFDL and
the old version of the NCEP seasonal forecast model.
According to the latest comparison, the current sea-
sonal forecast model performs much better than the
old version and about the same or slightly better than
the GFDL model as shown in Table 2. The improve-
ment in model physics apparently contributed to the
increase in the model skill. Looking closely at Fig. 11,
the model prediction is better for the years with larger

tropical Pacific SST anomalies (see warm events in
1982, 1986, and 1997 and cold events in 1984, 1988,
and 1998 initial conditions for DJF forecast), which
is reflected in the skill score of the tropical precipita-
tion (Fig. 12). None of the years with low skill scores
had a large tropical SST anomaly. But the opposite is
not the case, there are years with high skill scores in
both the PNA sector (Fig. 11) and the tropical Pacific
(Fig. 12) without large SST anomaly (e.g., 1990 for
JFM and FMA forecasts). The sources of predictabil-
ity in these cases are unknown and need further investi-
gation. The skill of the winter season forecasts (DJF)
started from different months, but verified for the same
season (i.e., forecasts with different lead times), are
displayed in Fig. 13. They are generally very similar but
with some differences, suggesting that the atmospheric
initial condition does not have a significant impact
during the summer season, at least for this system.

FIG. 12. Anomaly correlation of precipitation hindcasts
over the tropical Pacific. The month of initial state is
Nov and scores for average DJF, JFM, FMA, and MAM
are shown. The correlation for each year is computed
from the mean of a 10-member ensemble forecast. The
21-yr average correlation is shown at the upper right
of each figure.

FIG. 13. Anomaly correlation of 3-month mean
500-hPa height hindcasts for DJF over the PNA re-
gion. Each figure corresponds to the forecast
started from a different month. (top) Nov initial
condition (1-month lead); (second from top) Oct
initial condition (2-month lead); (third from top)
Sep initial condition (3-month lead); (bottom) Aug
initial condition (4-month lead).
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During summer, the geopotential height forecast
is generally much worse (mean 0.211–0.249, with
maximum of 0.6–07 as shown in Fig. 14). However,
we found that there is higher skill in predicting near
surface temperature over land (mean 0.229–0.278,
with maximum reaching 0.9) as shown in Fig. 15.
Since the only external forcing in these hindcasts is
the SST anomaly, this predictability most likely came
from SST anomalies. The use of Reanalysis-2 “ob-
served” soil wetness in the initial state will further
increase the model skill as shown in Fig. 5.

The model skill score of the real-time operational
forecast is displayed in Fig. 16. Since the forecast skill
strongly depends on magnitude of the tropical SST
anomalies as shown earlier, the comparison of skill
among forecasts made before and after April 2000
does not provide valid information on how the two
different models performed. The new model is show-
ing usable skill for near-surface temperature and pre-
cipitation (except July, August, and September) de-
spite the fact that SST forcing is very weak. However,

this weak forcing is reflected in the poor prediction
of 200-hPa height. The skill of near-surface tempera-
ture is probably coming from the sea surface tempera-
ture at the beginning of the prediction, which creates
anomalies in the soil wetness that in turn influence
the surface temperature prediction. These processes
need to be verified in future work. The failure of pre-

SFM 0.40 0.42 0.34

B9X 0.30 0.35 0.32

GFDL 0.35 0.42 0.36

TABLE 2. Comparison of 700-mb forecast
anomaly correlation for JFM over the PNA
region, averaged over years 1980–88. SFM is the
new version of the seasonal forecast model, B9X
is the old version, and GFDL is the GFDL model.

JFM FMA MAM

FIG. 14. Anomaly correlation of 3-month average 10-
member ensemble mean 500-hPa hindcasts for MJJ, JJA,
JAS, and ASO. Verification is against Reanalysis-2. Ini-
tial conditions are Apr.

FIG. 15. Same as in Fig. 14 but for 2-m tempera-
ture. Verification is against independent Climate
Division 344 data.
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diction during July–August–September is likely due
to the lack of initial soil wetness anomalies in these
runs.

Finally, we will show an example of an excellent
real time forecast together with the verifying map of
near surface temperature over North America dur-
ing JJA of 2000 in Fig 17. The warm anomaly in the
middle of the United States and the cold anomaly in
Canada were well predicted by the model. Note that
the magnitude of the predicted anomaly is less than
observed due to the ensemble averaging discussed
earlier in the paper.

Plans for improvements. The atmospheric model reso-
lution was increased from T42L28 to reduced grid

T62L28 in April 2001. The high-resolution model
performs better at the large scale as well as in near-
surface temperature prediction and simulation of
transient activities. This higher-resolution model can
also provide useful forecasts of tropical disturbances,
which will be reported in the future. The atmospheric
portion of the seasonal prediction model was recently
placed into the official operational suite of the NCEP
Central Operations. This freed our staff from the in-
tense monitoring work and allowed us to concentrate
more on the application of the product. The seasonal
prediction system was different than the daily short-
and medium-range predictions and this work was a
big challenge.

The use of Reanalysis-2 soil wetness initial condi-
tions will be performed by the spring of 2003. The
extension of the Reanalysis-2 to near–real time to pro-
duce soil wetness and snow depth analyses is in
progress. In the near future, the physics of the atmo-
spheric model will be upgraded to include liquid wa-
ter prediction, more physically realistic cloud
schemes, and Kim and Arakawa (1995) gravity wave

FIG. 16. One-month lead 3-month average operational
seasonal forecast anomaly correlation scores of North
American land precipitation (red), North American
land surface temperature (green), and 200-hPa height
over the PNA region (blue) for the period 1997–2001
shown in the top panel. The period where the lines are
missing is when the dynamical model was not run due
to a computer fire, and the model is the old version
prior to this period. The observed (blue) and predicted
(red) SST anomaly in the Niño-3.4 area is also shown
in the bottom panel.

FIG. 17. An example of excellent near-surface tem-
perature anomaly forecast (K). The 20-member
ensemble average 2-m temperature prediction for
JJA 2000: (top) observation; (bottom) forecast. Ini-
tial condition is May.
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drag. The ocean model and the ocean assimilation
system will be updated to a global domain. The two-
tier approach will continue, but more work toward a
one-tier system will be emphasized. The coupling
with the sea ice model will also be accelerated. Addi-
tional experimental 4-month forecasts will be per-
formed using persistent anomaly SSTs in collabora-
tion with Recherche en Prévision Numérique (RPN)
and the Canadian Center for Climate Modeling and
Analysis as part of their Historical Forecast Project
(Derome et al. 2000, manuscript submitted to
Atmos.–Ocean). This is an alternative (and inexpen-
sive) approach to extended-range prediction without
an ocean model.
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APPENDIX: SUMMARY OF ACRONYMS
USED IN THIS PAPER.
AMIP Atmospheric Model Intercomparison

Project
AO Arctic Oscillation
ASO August–September–October
CCM Community Climate Model
CMP coupled modeling project
COAPS Center for Ocean–Atmospheric Prediction

Studies
CPC Climate Prediction Center
CVS Concurrent Versions System
DJF December–January–February
DOE Department of Energy
ENSO El Niño–Southern Oscillation
FMA February–March–April
GCM general circulation model
GFDL Geophysical Fluid Dynamical Laboratory
GSFC Goddard Space Flight Center
JAS July–August–September
JFM January–February–March
JJA June–July–August
LDAS Land Data Assimilation System
MAM March–April–May
MJJ May–June–July
MOS model output statistics
MPI Message Passing Interface
MPP massively parallel processing
MRF Medium Range Forecast model
NAO North Atlantic Oscillation
NCAR National Center for Atmospheric Research
NCEP National Centers for Environmental

Prediction
NDJ November–December–January
NOAA National Oceanic and Atmospheric

Administration
OSU Oregon State University
PNA Pacific–North American teleconnection
RAS Relaxed Arakawa–Schubert

parameterization
RNL Reanalysis (NCEP–NCAR reanalysis)
RNL2 Reanalysis-2 (NCEP–DOE reanalysis)
RPN Recherche en Prévision Numérique
SAS Simplified Arakawa–Schubert

parameterization
SST sea surface temperature
SSTA sea surface temperature anomaly
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