Analysis of WRF Model Ensemble Forecast Skill for 80 m Winds over Iowa

Shannon Rabideau

2010 IAWIND Conference 4/6/2010 Mentors: Eugene Takle, Adam Deppe

Motivation and Objective

Growing wind industry
Unique/ limited data for 80 m
Not extrapolated from surface

 Hypothesis: WRF can forecast wind speeds at 80 m with an average mean absolute error less than 2.0 m s⁻¹ for the forecast period 38-48hr (approximately 8am-6pm on day 2 of the 54hr forecast period) in all seasons with a confidence level of 95%.

Data

 Observed: provided by MidAmerican Energy Corporation (MEC)
 10 min intervals, averaged hourly
 Total of 32 cases, 8 per season

Forecasted:
7 PBL schemes and ensemble mean
GFS and NAM initializations

Mean Absolute Error

Greater increase in MAE over time for NAM than for GFS

- Ensemble mean performs best
 - (1.497 m s⁻¹; 1.700 m s⁻¹)
- YSU close (+0.1 m s⁻¹)
- Blackadar (1.927 m s⁻¹) and QNSE (2.106 m s⁻¹) perform worst

Bias

GFS and NAM fairly comparable through the entire period

- YSU has lowest avg. bias through period (-0.130 m s⁻¹; 0.106 m s⁻¹)
- Blackadar has highest by almost a factor of two

(-1.424 m s⁻¹; -1.500 m s⁻¹)

Day 2 Daytime

Significantly better results in spring?

- Ensembles have lowest error
 - 1.529 m s⁻¹ vs. 2.098 m s⁻¹
- Blackadar (1.806 m s⁻¹) worst GFS
- QNSE (2.421 m s⁻¹) worst NAM

	Lower 95%	Mean	Upper 95%		Lower 95%	Mean	Upper 95%
Season	CI Bound	MAE	CI Bound	Season	CI Bound	MAE	CI Bound
Winter	1.500	1.797	2.094	Winter	2.167	2.377	2.586
Spring	1.135	1.401	1.667	Spring	1.250	1.555	1.860
Summer	1.587	1.810	2.034	Summer	2.032	2.553	3.073
Fall	1.498	1.796	2.094	Fall	2.481	2.719	2.957

Conclusions

- Hypothesis true for GFS over all cases, but not all seasons
 - CI pushes summer, fall, and winter over
 2.0 m s⁻¹ threshold (by <0.1 m s⁻¹)
- Hypothesis false for NAM over all cases and all seasons
- Ensembles and YSU most accurate schemes, QNSE least accurate

Further Research

Richardson Number

- Model performance by stability categories
- More cases and locations
- Time of model initialization
- Model perturbation ensembles

Thank you: Eugene Takle , Adam Deppe , MidAmerican Energy Corporation, and other members of Iowa State's "wind team".

References

- Andersen, T. K., 2007: Climatology of surface wind speeds using a regional climate model. B.S. thesis, Dept. of Geological and Atmospheric Sciences, Iowa State University, 11 pp.
- Archer, C. L., and M. Z. Jacobson, 2005: Evaluation of global wind power. *J. Geophys. Res.,* **110, D12110.**
- Dudhia, J., cited 2009: WRF Physics. [Available online at http://www.mmm.ucar.edu/ wrf/users/tutorial/200909/14_ARW_Physics_ Dudhia.pdf]
- Elliott, D., and M. Schwartz, 2005: Towards a wind energy climatology at advanced turbine hub-heights. Preprints, *15th Conf. on Applied Climatology, Savannah, GA, Amer. Meteor. Soc., JP1.9.*
- Klink, K., 2007: Atmospheric circulation effects on wind speed variability at turbine height. *J. Appl. Meteorol. and Climatol.*, **46, 445-456.**
- Pryor S. C., R. J. Barthelmie, D. T. Young, E. S. Takle, R. W. Arritt, D. Flory, W. J. Gutowski Jr., A. Nunes, J. Roads, 2009: Wind speed trends over the contiguous United States. *J. Geophys. Res.*, 114, D14105, doi: 10.1029/2008JD011416.
- Takle, E. S., J. M. Brown, and W. M. Davis, 1978: Characteristics of wind and wind energy in Iowa. *Iowa State J. Research.*, **52**, **313-339**.
- University Corporation for Atmospheric Re-search, cited 2009: Tutorial class notes and user's guide: MM5 Modeling System Version 3. [Available online at http://www. mmm.ucar.edu/mm5/documents/MM5_tut_Web_notes/MM5/mm5.htm] 9
- Zhang, D., and W. Zheng, 2004: Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameteriza-tions. J. Appl. Meteorol., 43, 157-169.
- Wind turbine image: http://www.news.iastate.edu