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Motivation and Objective

 Growing wind industry

 Unique/ limited data for 80 m

– Not extrapolated from surface

 Hypothesis: WRF can forecast wind speeds at 

80 m with an average mean absolute error less 

than 2.0 m s-1 for the forecast period 38-48hr 

(approximately 8am-6pm on day 2 of the 54hr 

forecast period) in all seasons with a confidence 

level of 95%.



Data

 Observed: provided by MidAmerican 

Energy Corporation (MEC)

– 10 min intervals, averaged hourly

– Total of 32 cases, 8 per season

 Forecasted:

– 7 PBL schemes and 

ensemble mean

– GFS and NAM 

initializations



Mean Absolute Error

 Greater increase in 

MAE over time for 

NAM than for GFS

 Ensemble mean 

performs best

(1.497 m s-1; 1.700 m s-1)

 YSU close (+0.1 m s-1)

 Blackadar (1.927 m s-1) 

and QNSE (2.106 m s-1) 

perform worst



Bias

 GFS and NAM  fairly 

comparable through 

the entire period

 YSU has lowest avg. 

bias through period

(-0.130 m s-1; 0.106 m s-1)

 Blackadar has 

highest by almost a 

factor of two

(-1.424 m s-1; -1.500 m s-1)



Day 2 Daytime

 Significantly better results in spring?

 Ensembles have lowest error

– 1.529 m s-1 vs. 2.098 m s-1

 Blackadar (1.806 m s-1) worst - GFS

 QNSE (2.421 m s-1) worst - NAM

GFS NAM



Conclusions

 Hypothesis true for GFS over all 

cases, but not all seasons

– CI pushes summer, fall, and winter over 

2.0 m s-1 threshold (by <0.1 m s-1)

 Hypothesis false for NAM over all 

cases and all seasons

 Ensembles and YSU most accurate 

schemes, QNSE least accurate



Thank you: Eugene Takle , Adam Deppe , MidAmerican 

Energy Corporation, and other members of Iowa State’s 

“wind team”.

Further Research

 Richardson Number

– Model performance by stability categories

 More cases and locations

 Time of model initialization

 Model perturbation ensembles
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