Why Do Wind Turbines Make Swishing Noises?

Samuel Frishman
Wind Energy Science Engineering and Policy REU
Iowa State University
Ames, Iowa
Mentors: Dr. Anupam Sharma and Sunil Arolla

Process:

Abstract:
Wind turbines produce aerodynamic noise:
- Influences:
 - Public acceptance
 - Rotor size
 - Siting

Experimental Methods:
Developed a software that predicts aerodynamic noise from a Horizontal Axis Wind Turbine (HAWT)

Flow Chart Representation of code:

Key Aerodynamic Noise Sources:
- Trailing edge noise
- Leading edge noise

References:

Acknowledgments:
Support for this research was provided by a National Science Foundation Research Experience for Undergraduates site program in Wind Energy Science Engineering and Policy (WESEP) at Iowa State University.

Results:
Noise levels at different blade positions
- models “swishing” noise

Visualization of noise experienced by an observer on ground (Courtesy Oerlemans)

Conclusions:
- Developed a software to model HAWT aerodynamic noise
- Demonstrated the phenomenon of blade swishing
 - Swishing due to amplitude modulation
- Software can be used for optimizing turbine micrositing and operation

Further Work:
- Software will be extended to account for:
 - multiple observers
 - multiple wind turbines
 - and eventually full wind farms