Satellite-derived potential evapotranspiration for distributed hydrologic runoff modeling

Kristie J. Franz¹, Ryan Spies¹, Angela Bowman¹, Terri S. Hogue^{2,3}, Jongyoun Kim³

- 1. Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA
- 2. Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO
- 3. Department of Civil and Environmental Engineering, University of California, Los Angeles, CA

Introduction

- Operational streamflow forecasting primarily relies on watershed-scale models driven by ground-based (commonly point-scale) observations of precipitation, temperature and climatological, pan-based potential evapotranspiration (PET) estimates.
- Advances in satellite and radar remote sensing of hydrologic variables have made the application of distributed models feasible.
- This study examines the potential benefits of a satellite-derived PET product (UCLA MODIS-PET; Kim and Hogue., 2008) for use in the HL-RDHM.
- The objective of this study is to improve operational hydrologic forecasts through the application of advanced spatially and temporally distributed satellite data products.

HL-RDHM

- The National Weather Service Hydrology Laboratory – Research Distributed Hydrologic Model V. 3.2.0
- Components: SNOW17, SACSMA-HT, Overland and Channel Routing (rutpix9)
- Model is run at the HRAP resolution (4km) at a 6hr time step
- A-priori CONUS gridded parameters developed by the Hydrology Lab

Model Inputs

Precipitation

- Climatology-Calibrated Precipitation Analysis (CPPA) provides quality controlled precipitation estimate at 4 km resolution.
- Combines CPC Unified Global Daily Gauge Analysis and Stage IV dataset.

Temperature

Gridded temperature dataset was developed using inverse distance weighting interpolation on ASOS and AWOS point scale station data

Automated Calibration

Selected a-priori model parameters for the SACSMA-HT and SNOW17 were calibrated using an automated Stepwise Line Search (SLS) technique and a Multi-Scale Objective Function.

- Calibration period: 1/1/2007 12/31/2010 (contained several wet summers)
- Validation period : 1/1/2003 12/31/2006
- A 1 year spin-up period was used to reduce the influence of initial model state conditions

Acknowledgements

Funding for this work was provided by NASA grant #NNX10AQ77G S01

We would like to thank personnel at the NWS/NCRFC and OHD, and in particular Mike DeWeese and Mike Smith, for their assistance in site identification and data collection.

References

therefore a more negative bias in stream discharge

Kim, J. and T.S. Hogue (2008), Evaluation of a MODIS-based Potential Evapotranspiration Product at the Point-scale, J. Hydrometeorol., 9, 444-460. Reed, S., Koren, V., Smith, M.B, Zhang, Z., Moreda, F., Seo, D.J., and DMIP Participants (2004), Overall Distributed Model Intercomparison Project Results, J. Hydrology., 298, 27-60. Smith, M.B., Koren, V., Zhang, Z., Zhang, Y., Reed, S.M., Cui, Z., Moreda, F., Cosgrove, B., Mikukami, N., Anderson, E.A., and DMIP 2 Participants (2012), Results of the DMIP 2 Oklahoma experiments, J. Hydrology., 418-419, 17-48. Smith, M.B., Koren, V., Zhang, Z., Zhang, Y., Reed, S.M., Pan, J.J., Moreda, F., (2004), Runoff response to spatial variability in precipitation: an analysis of observed data, J. Hydrology., 298, 267-286.

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

distributed SACSMA-HT for Midwest watersheds.