Source Water Assessment Plan for Ames, IA

Ryan Spies Cindy Maroney Jake Smokovitz Allison Vincent

Introduction

- Conceptual Model
 - Unconfined aquifer
 - Alluvial silts and sands in upper 12-15 feet
 - Coarse sand and gravel to 100 ft
 - No interaction with area outside valley walls
 - No interaction with confined aquifer below

Description of Model

- Rows: 22
- Columns: 12
- Cells: 792 total
 - 264 per layer
 - Large cells 2000 ft²
 - Small cells 1000 ft²
- 3 Layers
 - 1. 920-835 Alluvium
 - 2. 835-817 Late WI Outwash
 - 3. 817-780 Pre-IL Outwash
- R= 0.002 ft/day
- K= 1.38 x 10^3 ft/day
- $n_e = 0.25$

Description of Model

- Boundary Conditions
 - No flow
 - Used in every layer
 - Constant Head
 - Used in every layer
 - Head dependent cells
 - Squaw Creek- Stage = 2.5 ft deep
 - Skunk River (N) Stage = 4.6 ft deep
 - Skunk River (S) Stage = 11.6 ft deep

Description of Model

• River data

- Annual average from 2008 used from USGS stream data
- Conductance = 16.4 ft/day
- Calculated slope- data between gages used
 - Squaw Creek = 0.0012
 - Skunk River = 0.0014

• An example LIDAR image we used to estimate stream width

Mass Balance Percent Error: -0.08

Absolute Residual Mean	4.82
Residual Sum of Squares	7.75x10 ²
K _z 1	13.8 ft/day
K _{xy} 2	1,380 ft/day
K _{xy} 3	1,380 ft/day
K _z 1	1.38 ft/day
K _z 2	1.38 ft/day
K _z 1	1.38 ft/day
River Conductance	16.4 ft/day

SOURCE	INFLOW ft ³ /day	OUTFLOW ft ³ /day	Flux
Wells	0.0	0.0	
Constant Head	679,944.1	1,335,838.1	655,894 Out of Model
River	1,287,359.6	1,089,465.6	-197,894 GW
Recharge	456,000	0.0	
TOTAL	2,423,303.7	2,425,303.8	0.08%Error

~2000 ft³/day excess

Run	MAD	RSS	Parameters K(ft/d)		
1	4.92	8.36x10 ²	K _{xyz} = 1,380		
2	5.18	9.21x10 ²	K _{xyz} = 138		
3	4.79	7.71x10 ²	K _{xyz} = 13,800		
4	4.92	8.36x10 ²	K _x = 1,380, K _z = 138		
5	F	F	K _r = 1.64 (All Reaches) K _{xyz} = 1,380		
6	4.91	8.32x10 ²	K _r = 16.4 (All Reaches), K _{xyz} 1 = 138		
7	4.93	8.41x10 ²	K _{xyz} 2 = 138		
8	F	F	K _{xyz} 2 = 1,380, K _r = 8.2 (All Reaches)		
9	4.91	8.25x10 ²	K _z 1 = 1.38, K _{xy} 1 = 1,380		
10	4.9	8.23x10 ²	$K_z^2, 3 = 1.38$		
11	4.75	7.51x10 ²	K _{xy} 1 = 13.8, k _z 1 = 1.38		
12	7.65	1.8x10 ³	K _{xy} 2,3 = 13.8, K _z 2,3 = 1.38		
13	5.33	9.15x10 ²	K _{xy} 2,3 = 1,380, K _z 2,3 = 1.38		
14	5.33	9.15x10 ²	$K_{r}1 = 17$		
15	6.73	1.23x10 ³	$K_r 1 = 16.4, K_r 3 = 17$		
16	6.73	1.23x10 ³	K _r 3 = 17		
17	6.13	1.06x10 ³	$K_r 3 = 16.4, K_z 1 = 0.138$		

- Manual calibration did not yield a good solution
- PEST showed us that all parameters were insensitive

Pumping Simulation

SOURCE	INFLOW ft ³ /day	OUTFLOW ft ³ /day	Induced Effects
Wells	0.00	464,181.6	
Constant Head	688,455.7	1,332,718.9	644,263.2 Out of model
River	1,568,110.8	917,694.9	-650,415.9 GW
Recharge	456,000	0.00	
TOTAL	2,712,566.5	2,714,595.4	0.07%Error

	SOURCE	INFLOW ft ³ /day	OUTFLOW ft ³ /day	Flux
Steady State	Wells	0.0	0.0	
	Constant Head	679,944.1	1,335,838.1	655,894 Out of Model
	River	1,287,359.6	1,089,465.6	-197,894 GW
	Recharge	456,000	0.0	
	TOTAL	2,423,303.7	2,425,303.8	0.08%Error

	SOURCE	INFLOW ft ³ /day	OUTFLOW ft ³ /day	Induced Effects
Pumping	Wells	0.00	464,181.6	
	Constant Head	688,455.7	1,332,718.9	644,263.2 Out of model
	River	1,568,110.8	917,694.9	-650,415.9 GW
	Recharge	456,000	0.00	
	TOTAL	2,712,566.5	2,714,595.4	0.07%Error

Particle Tracking

Capture Zones

Conclusion

- Stoic Model insensitive to changes in parameters
- Very Small Drawdown
- Capture zones reflected river influence
 - Simple model \rightarrow not effective capture zones
 - Complexity needed to further delineate zones
- River to GW ~24% of incoming water (pumping)
 - Protect river water quality just as important as surface
- Our model not ready for the City of Ames