Climatology of Storm Reports Relative to Linear Jet Streaks

Christopher J. Schaffer Mentors: Dr. William A. Gallus Jr. and Adam J. Clark

Background

 Johnson-O'Mara (2006) identified favored quadrants for storm reports relative to linear jet streaks

Purpose:

- Further examine climatology of storm reports (1994-2003)
- Investigate the area in and around the jet streaks to see how other factors alter the circulations associated with jet streaks and the related storm reports

Hypotheses

- Jet quadrants with the highest average 250 mb divergence will also have the largest number of storm reports
- Average 250 mb divergence field will agree with the linear jet streak theory

Linear Jet Streak Description

Lower Heights

Rose et al. (2003)

Rose, S. F., P. V. Hobbs, J. D. Locatelli, and M. T. Stoelinga, 2003: A 10-yr climatology relating the locations of reported tornadoes to the quadrants of upper-level jet streaks. *Wea. Forecasting*, **19**, 301-309.

Method

- NCEP/NCAR NARR Reanalysis (Mesinger et al. 2006), SPC storm reports (NOAA 2007), and an analysis of linear jets by Johnson-O'Mara (2006)
- The storm reports occurred within a six-hour time period from 21 UTC to 3 UTC during the months from March until September of each year (1994-2003)
- A combination of FORTRAN programs and GrADS scripts was used to analyze the data and create related images

Overall Storm Report Densities

(c) Tornado

Jet Data (All reports)

Left Entrance Quadrant	Left Exit Quadrant
Storm Reports: 2802 (10.14%)	Storm Reports: 7983 (28.92%)
Divergence: 1.80x10 ⁻⁵ sec ⁻¹	Divergence: 1.52x10 ⁻⁵ sec ⁻¹
(2 nd largest)	(3 rd largest)
Right Entrance Quadrant	Right Exit Quadrant
Storm Reports: 8363 (30.30%)	Storm Reports: 8456 (30.63%)
Divergence: 2.74x10 ⁻⁵ sec ⁻¹	Divergence: 9.68x10 ⁻⁶ sec ⁻¹
(Largest)	(4 th largest)

Storm Densities by Direction

Divergence through mb levels (a) Divergence at the 250 mb level (c) Divergence at the 850 mb level (b) Divergence at the 500 mb level (d) Divergence at the 1000 mb level $1_{e} - 0_{5} - 0_{6} - 0_{6} - 0_{6} - 0_{6} - 0_{6} - 0_{7} - 0_{7} - 0_{6} - 0_{6} - 0_{6} - 0_{6} - 0_{6} - 0_{5} - 0_{5} - 0_{7} - 0_{7} - 0_{6} - 0_{6} - 0_{6} - 0_{6} - 0_{5$ I_sec

Divergence for "report-less" cases (a) Divergence at the 250 mb level (c) Divergence at the 850 mb level (b) Divergence at the 500 mb level (d) Divergence at the 1000 mb level -4e-06 -2e-06 -5e-07 4e 06 50-07 1e_05_06_06 ~go` Sec 06

Mean sea level pressure (mb)

Conclusions

- Maxima
 - Tornado and hail reports exit regions
 - Wind reports right entrance region
- Quadrants with greatest divergence at 250 mb did not have the greatest amount of storm reports
- Divergence at the 250 mb level agreed with the linear jet streak theory, though low-level divergence was influenced by a low pressure center in the left exit region
- The low, fronts associated with the low, and convection altered the jet-induced circulations, and fronts determined the distribution of storm reports

Further Research

- Examining a larger normalized area
- Considering surface temperature gradient in relation to pressure gradient used to identify fronts
- Plotting ageostrophic wind vectors and vorticity to further investigate circulations
- Closer examination of the relationship between the divergence associated with storm reports and the number of storm reports in a quadrant

Acknowledgments

- Adam Clark for his guidance and programming expertise
- Dr. Gallus for his help with the thesis paper and direction of the research
- Dave Flory and Daryl Herzmann for their computational assistance
- Kaj Johnson-O'Mara for his advice throughout the project

Questions?

Chris Schaffer schaffec@iastate.edu