Updated
summary (Print
text for
offline review;
images only)
1-5: Carbon Cycle, Methane
Short Summaries of Recent Research
Atmospheric Concentrations of Methane Leveling Off
Corporations Turn Green in Anticipation of Government Regulation
Global Warming Causes Soil to Give
Up Carbon
- The Carbon Dioxide Cost of
Traveling
- Global Warming Affects Plankton
Distribution in the Atlantic Ocean
- Fertilization of Arctic Soils Produces
a Positive Feedback to Global Warming
- Anthropogenic Carbon Dioxide Budget for the Anthropocene (1800
to 1994) and for the Period 1980 to 1999
- Is Sudden Warming at the Beginning of
the Eocene an Analog for Current Global Warming?
- Where Has All the Carbon
Gone?
- Bloom Doesn't Last Long
- Ocean Fertilization with Iron Leads to
Long-Lasting Blooms
- Contributions of Fires to
Atmospheric Carbon Dioxide Levels
- Amazonian Rainforests, Even Undisturbed by
Humans, are Undergoing Change.
- Amazon Fires Cause Changes in Cloud
Droplet Formation and Stratospheric Water and Particulate
Levels
- Leaves Fall Off and Decay, but What do Roots
do?
- Nitrogen for Enhanced Biosphere Uptake of
CO2
Oceans
Become More Acidic as Atmospheric CO2
Increases
- Update
on Ocean Fertilization to Absorb CO2
Increased
CO2 and Increased Temperature: Which Came
First?
- Role
of the North Atlantic Oscillation due to Carbon Uptake by
the North Atlantic Ocean
- Solid Methane on the Ocean Floor
-
Impact on Plants caused by Multiple Global Changes
- Impact on
Grasslands of Changes in Rainfall Variability
- Loss of Soil Carbon in a Warmer Climate
- Contribution of Major Wildfires to
Atmospheric Carbon Dioxide
-
Methane Hydrate for Fuel
- Carbon Cycle Update
- Amazonian Rivers as a Source of Carbon Dioxide
-
Fertilizing the Ocean with Iron Proponents.
Global warming is here and we need to
do something about it
-
Engineering Solution to Reducing Atmospheric Carbon
Dioxide Raises Serious Environmental Problems
Burying CO2 in the Deep
Ocean
- Global Warming slows vegetative decay
- Global Warming Increases Loss of
Peat from Peatlands
Carbon Dioxide
Variations have a Key Role in Creating Ice Ages
- Kyoto Protocol Requirements
How Much Carbon Could They Hold?
Ocean Sequestration of CO2
-
Large Sink for Atmospheric Carbon in North America
-
Long-term agroecosystem experiments
Websites
Emission Cuts
'Vital' for Oceans
- The Cost of US
Forest-based Carbon Sequestration (PDF File)
- UK to
Pump Greenhouse Gas Under Sea
- Current Greenhouse Gas
Concentrations
- Intergovernmental Panel on
Climate Change
- The
Carbon Cycle
- Carbon
Cycle
- One
gallon of gasoline requires 98 tons of buried prehistoric plant
material
- Carbon Sequestration R&D
Overview
- Novel Sequestration
Concepts
- Terrestrial Sequestration
Research
- Ocean Sequestration Research
- Geologic Sequestration
Research
- Carbon Capture Research
- The
Climate Conditions during the Triassic Period
- The North American
Carbon Program Plan (NACP)
Depositing
Carbon in the Soil Bank
CO2 Concentrations in the
Atmosphere
The Debate on
Whether
CO2 Consuming Trees Should Provide Credits Aginst the Amount of Greenhouse Gases Countries are
Allowed to Emit.
Global atmospheric
concentration of CO2.
CO2 emissions from
industrial processes
CO2 emissions from
land use change
The present carbon cycle
Greenhouse Gas
Emissions
An Elementary Discussion of Ocean Carbon. (From
Sea WiFS: Studying Ocean Color From Space).
Fact Sheet:
Greenhouse Gases and Global Climate Change.
- Saline Aquifer
CO2 storage (SACS)
-
The Biology Department at Whitman College.
-
Glossary: Carbon Dioxide and Climate
-
Methane is a Potent Greenhouse Gas (From EPA)
Additional References
- Heath, J. and Co-Authors,
2005: Rising atmospheric CO2 reduces sequestration of root-derived soil
carbon. Science, 309, 1711-1713.
- Ferretti, D. F, and Co-Authors,2005: Unexpected changes to the
global methane budget over the past 2000 years. Science, 309,
1714-1718.
- Pagani, M., J. C. Zachos,
K. H. Freeman, B. Tipple, and S. Bohaty, 2005: Marked decline in
atmospheric carbon dioxide concentrations during the Paleogene. Science,
309, 600-603.
- Matthews, H.D., A.J. Weaver, and K.J. Meissner, 2005: Terrestrial carbon cycle dynamics
under recent and future climate change. J. Climate, 18, 1609-1628.
- Jenkyns, H.C., A. Forster, S. Schouten, and J.S.S. Damste, 2004:
High temperatures in the late cretaceous Arctic Ocean. Nature, 432,
888-892.
- Atkinson, A., V. Siegel, E. Pakhomov, and P. Rothery, 2004: Long-term decline in krill
stock and increase and salps within the Southern Ocean. Nature, 432,
100-103.
- Lal, R., M. Griffin, J. Apt, L. Lave, and M.G. Morgan, 2004: Managing
soil carbon. Science, 304, 393.
- Hughen, K., S. Lehmen, J. Southon, J. Overpeck, O. Marchal, C.
Herring, and J. Turnbull, 2004: 14C activity and global carbon cycle
changes over the past 50,000 years. Science, 303,
202-207.
- Karl, D.M., E.A. Laws, P.J. Morris, L. Williams, and S.
Emerson, 2003: Metabolic balance of the open sea. Nature,
426, 32.
- Stokstad, E., 2003: Ancient weapons of mass destruction: Methane
gas? Science, 301, 1168.
- Schiermeier, Q., 2003: Gas leak! Nature,
423, 681-682.
- Agricultural Sources of
Greenhouse Gases
Dore, J. E., R.
Lukas, D. W. Sadler, and D. M. Karl, 2003: Climate-driven changes
to the atmospheric CO2 sink in the subtropical North Pacific Ocean.
Nature, 424, 754-757.
- Raymond, P.A., and J. J. Cole, 2003: Increase in the
export of alkalinity from North America's largest river. Science,
301, 88-91.
- Lackner, K. S., 2003: A guide to CO2 sequestration.
Science, 300, 1677-1678.
- Korner, C., 2003:
Slow in, rapid out - carbon flux studies and Kyoto targets.
Science, 300, 1242-1243.
- Schiermeier, Q., 2003: The oresmen. Nature, 421, 109-110.
- Gates, N. R., R. C. Pequignet, R. J. Johnson, and N. Gruber,
2002: A short-term sink for atmospheric CO2 in subtropical
mode water of the North Atlantic Ocean. Nature, 420,
489-493.
- del Giorgio, P. A., and C. M. Duarte, 2002: Respiration in the open ocean.
Nature, 420, 379-384.
- McDowell, N., 2002: Developing countries to gain from carbon-trading
fund. Nature, 420, 4.
- Jackson, R.B., J.L.Banner, E. B. Jobbagy, W.T. Pockman, and D.H.Wall, 2002: Ecosystem carbon loss
with woody plant invasion of grasslands. Nature,
418, 623-626.
- Morel, A., and D. Antoine, 2002: Small critters - big effects.
Science, 296, 1980-1982.
Gill, R. A., H. W. Polley, H. B. Johnson, L. J. Anderson, H.Maherali, and R. B. Jackson, 2002:
Nonlinear grassland responses to past and future atmospheric
CO2. Nature,
417, 279-282.
- Elderfield, H., 2002: Carbonic mysteries. Science,
296, 1618-1621.
- Retallack, G. J., 2001: A 300-million-year record of atmospheric carbon dioxide from
fossil plant cuticles. Nature, 411, 287-290.
- Chambers, J.Q., N. Higuchi, E.S. Tribuzy, and S.E. Trumbore, 2001: Carbon sink for a
century. Nature, 410, 429.
- Falkowski, P., et al, 2001: The global carbon cycle: A test of our knowledge of earth as
a system. Science, 290, 291-296.
- Knapp, A. K., and M. D. Smith,
2001: Variation among biomes in temporal dynamics of aboveground
primary production. Science,
291, 481-484.
Pacala, S. W. et al., 2001: Consistent land- and
atmosphere-based U.S. carbon sink estimates. Science, 292, 2316-2320.
Fang, J. A. Chen, C. Peng, X. Zhao, and L. Ci, 2001:
Changes in forest biomass carbon storage in China between 1949 and 1998.
Science, 292, 2320-2322.
- Fung, I., 2000: Variable carbon sinks. Science,
290, 1313.
- Kaiser, J., 2000: Soaking up carbon in forests and fields.
Science,
290, 922.
- Bousquet, P., P. Peylin, P. Ciais, C. Le Quere, P. Friedlingstein, and P. P. Tans,
2000: Regional changes in carbon dioxide fluxes of land and oceans
since 1980. Science,
290, 1342-1346.
- Caspersen, J. P., S. W. Pacala. J. C. Jenkins, G. C. Hurtt, P. R. Moorcroft, and R. A.
Birdsey, 2000: Contributions of land-use history to carbon accumulation in U.S.
forests. Science, 290, 1148-1151.
- Cox, P. M.,R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000:
Acceleration of global warming due to carbon-cycle feedbacks in a coupled
climate model. Nature, 408, 184-187.
- Betts, R. A., 2000: Offset of the potential carbon sink from boreal forestation by
decreases in surface albedo. Nature,
408, 187-190.
- Smith, S. D., T. E. Huxman, S. F. Zitzer, T. N. Charlet, D. C. Housman, J. S. Cloeman, L.
K. Fenstermaker, J. R. Seemann, and R. S. Nowak, 2000: Elevated CO2 increases
productivity and invasive species success in an arid ecosystem.
Nature, 408, 6808.
- Caldeira, K., and P. B. Duffy, 2000: The role of the southern ocean in
uptake and storage of anthropogenic carbon dioxide. Science,
287, 620-622.
- Katz, Miriam, E., Dorothy K. Pak, Gerald R. Dickens, and Kenneth G. Miller,
1999: The source and fate of massive carbon input during the latest
paleocene thermal maximum. Science, 286, 1531-1533.
- Macdonald, N. W., D. L. Randlett, and D. R. Zak, 1999: Soil warming
and carbon loss from a Lake State Spodosol. Soil Sci. Soc. Am.
J., 63, 211-218.
- Drury, C. F., T. O. Oloya, D. J. McKenney, D. G. Gregorich, C. S. Tan, and C. L.
vanLuyk, 1998: Long-term effects of fertilization and rotation on
denitrification and soil carbon. Soil Sci. Soc. Am. J., 62, 1572-1579.
- Duarte, C. M., and S. Agusti, 1998:
The CO2 balance of productive aquatic ecosystems.
Science, 281, 234-236.
- Parson, E. A., and D. W. Keith, 1998: Fossil fuels without CO2 emissions.
Science, 282, 1053-1054.
- McCarty, G. W., N. N. Lyssenko, and J. L. Starr, 1998: Short-term changes in soil
carbon and nitrogen pools during tillage management transition.
Soil Sci. Soc. Am. J., 62, 1564-1571.
- Rasmussen, P. E., K. W. T. Goulding, J. R. Brown, P. R. Grace, H. H. Janzen,
and M. Korschens, 1998: Long-term agroecosystem experiemnts: Assessing agricultural
sustainability and global change. Science, 282, 893-896.
- Tans, P. P., and J. W. C. White, 1998: In balance, with a little help from the plants.
Science, 281, 183-184.
- Falkowski, P. G.,
R. T. Barber, and V. Smetacek, 1998: Biogeochemical controls and feedbacks on
ocean primary production. Science, 281, 200-206.
- Field, C. B., M. J. Behrenfeld, J. T. Randerson, and P. Falkowski, 1998:
Primary production of the biosphere: Integrating terrestrial and
oceanic components. Science,
281, 237-240.
Asner, G. P., T. R. Seastedt, and A. R. Townsend, 1997: The
decoupling of terrestrial carbon and nitrogen cycles. Bioscience,
47, 226-234.
Houghton, J. T., L. G. Meira Filho, B. A. Callander N.
Harris, A. Kattenberg, and K. Maskell, 1996: Climate Change 1995.The Science
of Climate Change. Cambridge University Press, 78-82.
Johnson, K. A., et al. 1995: Methane Emissions from Cattle.
Journal of Animal Science, 73, 2483-2492.
Kerr, R., 1994: Methane
Increase Put on Pause. Science, 263, 751.
Birks, J.W., J.G. Calvert, R.E. Sievers, eds, 1992: The
Chemistry of the Atmosphere: Its Impact on Global Change: Chemrawn VII
Perspectives and Recommendations. The Agency for International Development,
163 pp.
- Kling, G. W., et al., 1991: Arctic Lakes and Streams as Gas
Conduits to the Atmosphere: Implications for Tundra Carbon Budgets.
Science, 251, 298-301.
Houghton, J.T., G.J. Jenkins, J.J. Ephraums, eds, 1990:
1990 Intergovernment Panel on Climate Change, Cambridge University Press,
78-82.
Phillips, D.E., A. Wild, and D.S. Lenkinson, 1990: The Soils
Contribution to Global Warming. Geographical Magazine, April, 36-38.
Post, W.M. T.S. Peng, W.R. Emanuel, S.W. King, V.H. Dale,
and D.L. DeAngelis, 1990: The Global Carbon Cycle. Amer.
Sci., 78, 310-326.
Houghton, J. T., G. J. Jenkins, and
J. J. Ephraums, 1990: Climate Change, The IPCC Scientific
Assessment. Cambridge University Press. p. 18-23
Berner, R.A., 1990: Atmospheric Carbon Dioxide Levels over
Phanerozoic Time. Science, 249, 1382-1386.
Fraser, P. J., et al., 1986: Termites and Global Methane:
Another Assessment. Journal of Atmospheric Chemistry 4, 295-310.
Seiler W., et al. 1984: Field Studies of Methane Emission
From Termite Nests Into the Atmosphere and Measurement of Methane Uptake by
Tropical Soils. Journal of Atmospheric Chemistry, 1, 171-186.
- Goulden, M. L., S. C. Wofsy, J. W. Harden, S.
E. Trumbore, P. M. Crill, S. T. Gower, T. Fries, B. C.
Daube, S.-M. Fan, D. J. Sutton, A. Bazzaz, and J. W. Munger,
1998: Sensitivity of boreal forest carbon balance to soil
thaw. Science, 279, 214-217.
Tsuda, A., et al., 2003: A Mesoscale
Iron Enrichment in the Western Subarctic Pacific Induces a Large Centric Diatom Bloom.
Science, 300, 958-961.
-